首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that intracerebroventricular injection of synthetic orexins stimulated food intake in rats. This pharmacological evidence suggests that orexins may have a role for the central regulation of feeding. In the present study, we investigated the hypothesis of whether endogenous orexins indeed play a vital role in feeding behavior. An anti-orexin polyclonal antibody was used throughout the study. First, we examined the specificity of the antibody to orexin by Western blot analysis and immunohistochemistry. Next, the effects of central injection of the orexin antibody on food intake in 24-h-fasted rats were evaluated. Western blot analysis revealed that the orexin antibody detected synthetic orexin-A. Immunohistochemical study showed that orexin-positive neurons were identified only in the lateral hypothalamic area, in agreement with previous reports. Neither control antibody nor the orexin antibody preabsorbed with excess amount of orexin-A detected neurons, indicating that the orexin antibody is specific. Intracisternal but not intraperitoneal injection of the orexin antibody dose-dependently suppressed feeding. All these results suggest that immunoneutralization of endogenous orexins in the brain reduced food intake. In other words, we suggest that endogenous brain orexin may have a physiologically relevant action on feeding behavior.  相似文献   

2.
3.
The orexins are recently identified appetite-stimulating hypothalamic peptides. We used immunohistochemistry to map orexin-A and orexin-B immunoreactivity in rat brain, spinal cord, and some peripheral tissues. Orexin-A- and orexin-B-immunoreactive cell bodies were confined to the lateral hypothalamic area and perifornical nuclei. Orexin-A-immunoreactive fibers were densely distributed in the hypothalamus, septum, thalamus, locus coeruleus, spinal cord, and near the ventricles, but absent from peripheral sites investigated. In contrast, orexin-B-immunoreactive fibers were distributed sparsely in the hypothalamus. Orexin cells are strategically sited to contribute to feeding regulation, but their widespread projections suggest that orexins have other physiological roles.  相似文献   

4.
The orexins are recently identified appetite-stimulating hypothalamic peptides. We used immunohistochemistry to map orexin-A and orexin-B immunoreactivity in rat brain, spinal cord, and some peripheral tissues. Orexin-A- and orexin-B-immunoreactive cell bodies were confined to the lateral hypothalamic area and perifornical nuclei. Orexin-A-immunoreactive fibers were densely distributed in the hypothalamus, septum, thalamus, locus coeruleus, spinal cord, and near the ventricles, but absent from peripheral sites investigated. In contrast, orexin-B-immunoreactive fibers were distributed sparsely in the hypothalamus. Orexin cells are strategically sited to contribute to feeding regulation, but their widespread projections suggest that orexins have other physiological roles.  相似文献   

5.
Leptin, the product of the ob gene, is a satiety factor secreted mainly in adipose tissue and is part of a signaling mechanism regulating the content of body fat. It acts on leptin receptors, most of which are located in the hypothalamus, a region of the brain known to control body homeostasis. The fastest and strongest hypothalamic response to leptin in ob/ob mice occurs in the paraventricular nucleus, which is involved in neuroendocrine and autonomic functions. On the other hand, orexins (orexin-A and -B) or hypocretins (hypocretin-1 and -2) were recently discovered in the hypothalamus, in which a number of neuropeptides are known to stimulate or suppress food intake. These substances are considered important for the regulation of appetite and energy homeostasis. Orexins were initially thought to function in the hypothalamic regulation of feeding behavior, but orexin-containing fibers and their receptors are also distributed in parts of the brain closely associated with the regulation of cardiovascular and autonomic functions. Functional studies have shown that these peptides are involved in cardiovascular and sympathetic regulation. The objective of this article is to summarize evidence on the effects of leptin and orexins on cardiovascular function in vivo and in vitro and to discuss the pathophysiological relevance of these peptides and possible interactions.  相似文献   

6.
7.
8.
Aging is associated with a progressive decrease in appetite and food intake. Both A and B orexins, expressed in specific neurons of the lateral hypothalamic area, have been implicated in the regulation of sleep and feeding. In this study, the stimulatory effect of intracerebroventricular administration of the orexins on food intake was compared between young (4-mo-old) and old (25- to 27-mo-old) male Wistar rats. A stainless steel cannula was implanted stereotactically into the left lateral ventricle. After a 7-day recovery period, different doses (0-30 nmol) of orexins were injected into the left lateral ventricle without anesthesia. Food and water consumptions were measured at 1, 2, and 4 h after injection. The protein levels of orexin receptors, a specific receptor for orexin-A (OX1R) and a receptor for both orexin-A and -B (OX2R), in the hypothalamus were determined by Western blot analysis and compared between young and old rats. Intracerebroventricular administration of orexin-A stimulated food intake in a dose-dependent manner in young rats. However, no effects were observed at any dose in old rats. The protein level of OX1R in the hypothalamus was significantly lower in old rats than in young rats, although the protein level of OX2R was comparable between groups. Results of the present study indicate that the function of the orexin system is diminished in old rats. The decrease in the OX1R protein level in the hypothalamus could be responsible for orexin-A's lack of stimulation of food intake in old rats.  相似文献   

9.
10.
Central structures involved in opioid-induced feeding   总被引:1,自引:0,他引:1  
This paper summarizes efforts to identify structures involved in the opioid regulation of feeding. Many opioid agonists and antagonists increase or decrease food intake when injected centrally, which suggests, but alone does not prove, that the opioid feeding system is located within the brain. Some conditions of hunger and feeding cause changes in opioid peptide levels in certain brain areas, notably the hypothalamus, which may indicate that the areas are components of this opioid system. Lesion studies have also identified some potentially important structures, inasmuch as lesions of these structures reduce the effectiveness of opioid agonists or antagonists to alter food intake. Finally, microinjection studies have mapped the brain in terms of the effects on feeding of opioid agonists and antagonists. Results of different types of studies are consistent in suggesting that parts of the hypothalamus, particularly the paraventricular and ventromedial nuclei and the lateral hypothalamic area, are important components of the opioid feeding system.  相似文献   

11.
The hypocretins (hcrt1 and hcrt2), also known as orexins, are two neuropeptides derived from the same precursor, expressed in a few thousand cells in the lateral hypothalamus. Hypocretin-containing cells project throughout the brain, including ascending projections to the olfactory bulb and cerebral cortex, through the medial septum and the nucleus accumbens. Here, we have studied the interactions of the hypocretins with different neurotransmitters by patch clamp recording of acutely dissociated cells from the nucleus accumbens. Application of hcrt1 or hcrt2 decreased postsynaptic NMDA currents, enhanced GABA currents but did not affect glycine-activated conductances. Our results strongly suggest that the hypocretin peptides may be inhibitory peptides, probably via binding hcrt receptor 2.  相似文献   

12.
Orexin A and B, also called hypocretin 1 and 2, were recently discovered in the hypothalamus. This organ, in which a number of neuropeptides have been demonstrated to stimulate or suppress food intake, is considered important for the regulation of appetite and energy homeostasis. Orexins were initially reported as a regulator of food intake. More recent reports suggest their possible important roles in the multiple functions of neuronal systems, such as narcolepsy, a sleep disorder. Orexins and their receptors are distributed in neural tissue and brain regions involved in the autonomic and neuroendocrine control. Functional studies have shown that these peptides evoke changes in cardiovascular and sympathetic responses. The data from our in vivo and in vitro studies suggest that the peptide acting on neurons in the hypothalamic paraventricular nucleus increases the cardiovascular responses. This review will focus on the neural effects of orexins and how these peptides may participate in the regulation of cardiovascular and sympathetic functions.  相似文献   

13.
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, “first order” neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to “second order” neurons, partly located in the lateral hypothalamic area. These “second order” neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.  相似文献   

14.
Orexin-A and -B are neuropeptides mainly expressed in the lateral hypothalamic area (LHA). A role for orexins was first demonstrated in the regulation of feeding behaviour. Subsequently, the peptides have been implicated in the control of arousal. To date, two receptors for orexins have been characterised: orexin-1 and -2 receptors (OX-R1 and OX-R2). Both receptor genes are widely expressed within the rat brain. Particularly high expression of both receptor genes in certain hypothalamic and pons nuclei could be responsible for the orexigenic and arousal properties of the peptides. It is, however, presently unclear if one given receptor subtype or both subtypes may mediate a specific biological effect of orexins such as an increase in food intake. We have recently reported the distribution of the OX-R1 protein in the rat nervous system. In this study, we report the distribution of the OX-R2 protein in the rat brain and spinal cord using specific anti-peptide antisera raised against the OX-R2 protein. We also assess the expression profile of the OX-R2 gene in different brain regions. Immunolabelling for the OX-R2 protein was observed in brain regions that exhibited OX-R1-like immunoreactivity (cerebral neocortex, basal ganglia, hippocampal formation, and many other regions in the hypothalamus, thalamus, midbrain and reticular formation). Differences in the OX-R1 and OX-R2 distribution were, however, noticed in the hippocampus, hypothalamus and dorso-lateral pons.  相似文献   

15.
16.
Neuropeptide Y (NPY) is a well-characterized neuromodulator in the central nervous system, primarily implicated in the regulation of feeding. NPY, orexins, and ghrelin form a hypothalamic food intake regulatory circuit. Orexin and ghrelin are also implicated in sleep-wake regulation. In the present experiments, we studied the sleep-modulating effects of central administration of NPY in rats. Rats received intracerebroventricular injection of physiological saline or three different doses of NPY (0.4, 2, and 10 microg in a volume of 4 microl) at light onset. Another group of rats received bilateral microinjection of saline or 2 microg NPY in the lateral hypothalamus in a volume of 0.2 microl. Sleep-wake activity and motor activity were recorded for 23 h. Food intake after the control and treatment injections was also measured on separate days. Intracerebroventricular and lateral hypothalamic administration of NPY suppressed non-rapid-eye-movement sleep and rapid-eye-movement sleep in rats during the first hour after the injection and also induced changes in electroencephalogram delta power spectra. NPY stimulated food intake in the first hour after both routes of administration. Data are consistent with the hypothesis that NPY has a role in the integration of feeding, metabolism, and sleep regulation.  相似文献   

17.
Orexin A and B, also known as hypocretin 1 and 2, are two recently isolated hypothalamic peptides. As orexin-containing neurons are strategically located in the lateral hypothalamus, which has long been suspected to play an important role in feeding behaviors, initial studies were focused on the involvement of orexins in positive food intake and energy metabolism. Recent studies implicate a more diverse biological role of orexins, which can be manifested at different level of the neuraxis. For example, canine narcolepsy, a disorder with close phenotypic similarity to human narcolepsy, is caused by a mutation of hypocretin receptor 2 gene. Results from our immunohistochemical and functional studies, which will be summarized here, suggest that the peptide acting on neurons in the rostral ventrolateral medulla augment sympathoexcitatory outflow to the spinal cord. This finding is discussed in the context of increased sympathetic activity frequently associated with obesity.  相似文献   

18.
Many hyothalamic neuropeptides are involved in the regulation of food intake and body weight. The orexins (OX) which are synthesized in the lateral hypothalamus are among the most recently characterized whereas neuropeptide Y (NPY) belongs to a group of "older" peptides extensively studied for their effects on feeding behavior. Both stimulate food ingestion in rodents. In this experiment, we measured the expressions of these peptides as well as of their receptors (OX1-R and OX2-R, Y1 and Y5) in the hypothalamus of obese hyperphagic and lean Zucker rats by real-time RT-PCR using the TaqMan apparatus. NPY mRNA expression in the obese rats was significantly increased by a factor of 10 (P < 0.002) whereas expressions of the Y1 and Y5 receptors were decreased by 25% (P < 0.01) and 50% (P < 0.002), respectively. Their prepro-orexin mRNA expression was more than twofold decreased (P < 0.01) and expressions of their OX receptors 1 and 2 mRNA were five- and fourfold increased (P < 0.05), respectively. An inverse phenomenon was therefore noted between the two peptides: for NPY, increased levels and downregulation of receptors; and for OX, diminished levels with upregulation of receptors. The reasons for these changes might be linked to the absence of leptin signaling as similar profiles are found in the ob/ob mice. For orexins at least, other factors such as hyperglycemia might be involved. Based on anatomical considerations, a direct effect of NPY or of other brain peptides such as CRH cannot be excluded. We conclude that the diminution in the OX tone might participate in a counterregulatory system necessary to limit the noxious effects of NPY on food intake and body weight.  相似文献   

19.
Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphé nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphé nuclei, raphé pallidus, raphé obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphé pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphé nuclei, and support the idea that orexins simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号