首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the role of nematode predation in the functioning of detrital food webs assembled in microcosms. The microcosms contained defaunated humus and litter materials, a diverse microbial community with bacteria, fungi and protozoa, and a birch (Betula pendula) seedling infected with mycorrhizal fungi. Different levels of top-down control upon microbivorous nematodes were set up by assembling food webs either without predators, or in combinations with a specialist and a non-specialist predatory mite (Mesostigmata). The nematode community was composed of either (1) three species of bacterivorous, or (2) three species of fungivorous nematodes or (3) both groups together. After two growing periods for the birch (38 weeks), the microcosms were destructively sampled for animal and microbial biomasses, concentration of mineral N in the soil, plant biomass and plant N concentration. The specialist predator reduced biomasses of both bacterial- and fungal-feeding nematodes by more than 50%, whereas the non-specialist predator weakly increased the biomass of fungivorous nematodes. Thus, under high predation pressure, the biomass of microbivores changed as predicted by trophic dynamic models assuming strong top-down control and uniformly behaving trophic levels. Despite this, microbial biomass was unaffected by the predators. However, microbial respiration increased slightly in the presence of predators. Assuming that microbial respiration correlates with microbial productivity, the increase in microbial respiration indicates a cascading productivity regulation. The composition of the microbivore community had only a minor effect on the outcome of the top-down control on microbes. The >50% reduction in nematode biomass and respiration coincided with <16% increase in microbial respiration and did not affect microbial biomass. Presence of the specialist predator slightly reduced soil NH+ 4 concentration in communities with fungivore nematodes but plant growth and N uptake remained unchanged. Thus, the structure of the community only weakly controlled nutrient mineralisation. Received: 18 May 1998 / Accepted: 3 May 1999  相似文献   

2.
Despite considerable recent interest in how biodiversity may influence ecosystem properties, the issue of how plant diversity and composition may affect multiple trophic levels in soil food webs remains essentially unexplored. We conducted a glasshouse experiment in which three plant species of each of three functional groups (grasses, N‐fixing legumes and forbs) were grown in monoculture and in mixtures of three species (with the three species being in the same or different functional groups) and all nine species. Plant species identity had important effects on the biomasses or population densities of belowground primary consumers (microbial biomass, herbivorous nematodes) and two groups of secondary consumers (microbe‐feeding nematodes and enchytraeids); the third consumer trophic level (predatory nematodes) was marginally not significantly affected at P=0.05. Plant species also influenced the relative importance of the bacterial‐based and fungal‐based energy channels for both the primary and secondary consumer trophic levels. Within‐group diversity of only the soil microflora and herbivorous nematodes (both representing the basal consumer trophic level) were affected by plant species identity. However, community composition within all trophic groupings considered (herbivorous nematodes, microbes, microbe‐feeding nematodes, predatory nematodes) was strongly influenced by what plant species were present. Despite the strong responses of the soil biota to plant species identity, there were few effects of plant species or functional group richness on any of the belowground response variables measured. Further, net primary productivity (NPP) was unaffected by plant diversity. Since some belowground response variables were correlated with NPP across treatments, it is suggested that belowground responses to plant diversity might become more apparent in situations when NPP itself responds to plant diversity. Our results point to plant species identity as having important multitrophic effects on soil food webs, both at the whole trophic group and within‐group levels of resolution, and suggest that differences in plant traits across species may be important in driving the decomposer subsystem.  相似文献   

3.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

4.
There has been a growing recent interest in how foliar herbivory may indirectly affect the belowground sub-system, but little is known about the belowground consequences of the identity, species composition or diversity of foliar herbivores. We performed an experiment, utilising model grassland communities containing three plant species, in which treatments consisted of addition of each of eight aphid species in single and in two- four- and eight-species combinations, as well as an aphid-free treatment. While aphid species treatments did not affect total plant biomass or productivity, aphid species identity had important effects on the relative abundance of the three plant species. This in turn affected the abundances of each of three groups of secondary consumers in the soil food web (bacterial- and fungal-feeding nematodes, and enchytraeids) but not primary consumers (microbes, herbivorous nematodes) or tertiary consumers (predatory nematodes). The fact that some trophic levels responded to treatments while others did not is consistent with trophic dynamic theory. Aphid species treatments also affected the community composition within each of the herbivorous, microbe-feeding and top predatory nematode groups, as well as diversity within the first two of these groups. However, aphid species diversity per se had few effects. There were specific instances in which specific aboveground and belowground response variables in two aphid species combinations differed significantly from those in both of the corresponding single aphid species treatments (apparently as a consequence of resource use complementarity between coexisting aphid species), but no instance in which increasing aphid diversity beyond two species had any effect. Our results provide evidence that the identity of aboveground consumers can have effects that propagate through multiple trophic levels in soil food webs in terms of consumer abundance, and composition and diversity within trophic levels.  相似文献   

5.
Aboveground, large and higher trophic-level organisms often respond more strongly to environmental changes than small and lower trophic-level organisms. However, whether this trophic or size-dependent sensitivity also applies to the most abundant animals, microscopic soil-borne nematodes, remains largely unknown. Here, we sampled an altitudinal transect across the Tibetan Plateau and applied a community-weighted mean (CWM) approach to test how differences in climatic and edaphic properties affect nematode CWM biomass at the level of community, trophic group and taxon mean biomass within trophic groups. We found that climatic and edaphic properties, particularly soil water-related properties, positively affected nematode CWM biomass, with no overall impact of altitude on nematode CWM biomass. Higher trophic-level omnivorous and predatory nematodes responded more strongly to climatic and edaphic properties, particularly to temperature, soil pH, and soil water content than lower trophic-level bacterivorous and fungivorous nematodes. However, these differences were likely not (only) driven by size, as we did not observe significant interactions between climatic and edaphic properties and mean biomasses within trophic groups. Together, our research implies a stronger, size-independent trophic sensitivity of higher trophic-level nematodes compared with lower trophic-level ones. Therefore, our findings provide new insights into the mechanisms underlying nematode body size structure in alpine grasslands and highlight that traits independent of size need to be found to explain increased sensitivity of higher trophic-level nematodes to climatic and edaphic properties, which might affect soil functioning.  相似文献   

6.
Tritrophic interactions in a soil community enhance decomposition rates   总被引:3,自引:0,他引:3  
Microbivorous soil fauna can influence decomposition rates by regulating biomass and composition of the microbial community. The idea that predators at higher trophic levels regulate population densities of microbivorous fauna and thus indirectly increase microbial growth and activity has often been suggested but rarely examined in soil ecosystems. In this paper the effects of tritrophic interactions on decomposition processes in the soil are studied and expressed as soil respiration, hyphal lengths, cellulase and chitinase activities. The experiments were carried out in soil microcosms in a factorial design with three fungal species ( Alternaria alternata , Fusarium oxysporum , Trichoderma viride ), the fungivorous collembolan Folsomia fimetaria and the predatory mite Hypoaspis aculeifer . The respiration rate was significantly higher with three trophic levels than in those with two and lowest in those with only fungi present. This indicates that a low level of grazing stimulates microbial respiration more than a high level or no grazing at all. The effect was similar for all three fungal species but most pronounced in microcosms with the fungus A. alternata which was a preferred food source by the collembolans. Hyphal lengths were in all cases but with T. viride reduced in the presence of collembolans and predatory mites. T. viride had a slightly higher chitinase activity than the other fungi but increased numbers of trophic levels did not affect the enzymatic activities of any of the fungi.  相似文献   

7.
Ecotoxicological studies usually focus on single microbial species under controlled conditions. As a result, little is known about the responses of different microbial functional groups or individual species to stresses. In an aim to assess the response of complex microbial communities to pollution in their natural habitat, we studied the effect of a simulated lead pollution on the microbial community (bacteria, cyanobacteria, protists, fungi, and micrometazoa) living on Sphagnum fallax. Mosses were grown in the laboratory with 0 (control), 625, and 2,500 microg L(-1) of Pb(2+) diluted in a standard nutrient solution and were sampled after 0, 6, 12, and 20 weeks. The biomasses of bacteria, microalgae, testate amoebae, and ciliates were dramatically and significantly decreased in both Pb addition treatments after 6, 12, and 20 weeks in comparison with the control. The biomass of cyanobacteria declined after 6 and 12 weeks in the highest Pb treatment. The biomasses of fungi, rotifers, and nematodes decreased along the duration of the experiment but were not significantly affected by lead addition. Consequently, the total microbial biomass was lower for both Pb addition treatments after 12 and 20 weeks than in the controls. The community structure was strongly modified due to changes in the densities of testate amoebae and ciliates, whereas the relative contribution of bacteria to the microbial biomass was stable. Differences in responses among the microbial groups suggest changes in the trophic links among them. The correlation between the biomass of bacteria and that of ciliates or testate amoebae increased with increasing Pb loading. We interpret this result as an effect on the grazing pathways of these predators and by the Pb effect on other potential prey (i.e., smaller protists). The community approach used here complements classical ecotoxicological studies by providing clues to the complex effect of pollutant-affecting organisms both directly and indirectly through trophic effects and could potentially find applications for pollution monitoring.  相似文献   

8.
Laakso  Jouni  Setälä  Heikki  Palojärvi  Ansa 《Plant and Soil》2000,225(1-2):153-165
We studied the sensitivity of soil microbial communities and ecosystem processes to variation in the vertical and horizontal structure of decomposer food web under nitrogen poor and N-enriched conditions. Microcosms with humus and litter layer of boreal forest floor, birch seedlings infected with mycorrhizal fungi, and decomposer food webs with differing trophic group and species composition of soil fauna were constructed. During the second growing period for the birch, we irrigated half of the microcosms with urea solution, and the other half with de-ionised water to create two levels of N concentration in the substrate. During the experiment night time respirations of the microcosms were measured, and the water leached through the microcosms was analysed for concentration of mineral N, and nematode numbers. The microcosms were destructively sampled after 37 weeks for plant biomass and N uptake, structure of soil animal and microbial community (indicated by PLFA profiles), and physical and chemical properties of the humus and litter materials. Predatory mites and nematodes had a negative influence on the biomass of their microbivorous and microbi-detritivorous prey, and microbi-detritivores affected the biomass and community structure of microbes (indicated by PLFA-analysis). Moreover, predatory mites and nematodes increased microbial biomass and changed the microbial community structure. The decomposer food web structure affected also N uptake and growth of plants. Microbi-detritivorous fauna had a positive effect, whereas predators of microbial and detritus feeding fauna exerted a negative influence on plant N uptake and biomass production. The impact of a trophic group on the microbes and plant was also strongly dependent on species composition within the group. Nitrogen addition magnified the influence of food web structure on microbial biomass and plant N uptake. We suggest that addition of urea-N to the soil modified the animal-microbe interaction by increasing microbial growth and altering community structure of microbes. The presence of microbi-detritivores and predators reduced loss of carbon from the microcosms, and the food web structure influenced also water holding capacity of the materials. The changes in plant growth, nutrient cycling, size of N and C pools, and in the physical properties of the soil emphasize the importance and diversity of indirect consequences of decomposer food web structure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Juha Mikola 《Oecologia》1998,117(3):396-403
Previous theoretical and empirical evidence suggests that species composition within trophic levels may profoundly affect the response of trophic-level biomasses to enhanced basal resources. To test whether species composition of microbivorous nematodes has such an effect in microbial-based soil food webs, I created three microcosm food webs, consisting of bacteria, fungi, bacterial-feeding nematodes (Acrobeloides tricornus, Caenorhabditis elegans), fungal-feeding nematodes (Aphelenchus avenae, Aphelenchoides sp.) and a predatory nematode (Prionchulus punctatus). The food webs differed in species composition at the second trophic level: food web A included A. tricornus and Aph. avenae, food web B included C. elegans and Aphelenchoides sp., and food web AB included all four species. I increased basal resources by adding glucose to half of the replicates of each food web, and sampled microcosms destructively four times during a 22-week experiment to estimate the biomass of organisms at each trophic level. Microbivore species composition significantly affected bacterivore and fungivore biomass but not bacterial, fungal or predator biomass. Greatest bacterivore and fungivore biomass was found in food web A, intermediate biomass in food web AB, and smallest biomass in food web B. Basal resource addition increased the biomass of microbes and microbivores but did not affect predator biomass. Importantly, microbivore species composition did not significantly modify the effect of additional resources on trophic-level biomasses. The presence of a competitor reduced the biomass of A. tricornus and Aph. avenae, in that the biomass of these species was less in food web AB than in food web A, whereas the biomass of C. elegans and Aphelenchoides sp. was not affected by their potential competitors. The biomass of Aph. avenae increased with additional resources in the absence of the competitor only, while the biomass of A. tricornus and Aphelenchoides sp. increased also in the presence of their competitors. The results imply that microbivore species composition may determine the second-level biomass in simple microbe-nematode food webs, but may not significantly affect biomass at other levels or modify the response of trophic-level biomasses to enhanced basal resources. The study also shows that even if the role of predation in a food web is diminished, the positive response of organisms to increased resource availability may still be hindered by competition. Received: 22 June 1998 / Accepted: 28 August 1998  相似文献   

10.
Increased carbon translocation to the rhizosphere via 'leakage' induced by low amounts of plant parasitic nematodes can foster microorganisms. The effects of the root-knot nematode Meloidogyne incognita on microbial biomass (C(mic)) and community structure (phospholipid fatty acids) in the rhizosphere of barley were studied. Inoculation densities of 2000, 4000, and 8000 nematodes were well below the threshold level for plant damage. A (13)CO(2) pulse-labelling was performed to assess the distribution of assimilated (13)C in the rhizosphere. Infection with M. incognita increased the carbon concentration in shoots, and enhanced root biomass slightly. The presence of nematodes did not affect microbial biomass, but significantly changed the allocation of the recent photosynthate. Less plant carbon was sequestered by microorganisms with increasing nematode abundance. Microbial community structure was distinctly altered in the early stages of the plant-nematode interactions. Both, bacteria and fungi, showed a positive response with 2000, and a negative one with 4000 and 8000 M. incognita added. The results suggest that low-level root herbivory still imposes a considerable carbon demand, and that proliferation of microorganisms due to increased rhizodeposition may be short-termed. The carbon flow to rhizosphere microbial communities is likely dependent on the specific nematode-plant association and the developmental stage of the nematode in the host.  相似文献   

11.
《Ecological Complexity》2008,5(2):132-139
Understanding the processes underlying food-web structure and organization remains one of the major tasks of ecology. While first attempts were mostly based on niche theory, with body size of species imposing a hierarchical structure for consumer species, it has been recently suggested that phylogenetic constraints may be more fundamental to understand who eats whom in natural communities. Models of food-web structure built on basic evolutionary assumptions are able to adequately reproduce the topology of real food-webs. Here, we analyze different implications of phylogenetic constraints on trophic structure, and present preliminary results. Our exploration of the relationship between trophic and taxonomic similarity in food-webs shows that phylogeny and trophic structure are closely linked. Interestingly, the relationship is stronger for trophic similarity between prey (similarity measured by shared predators species, or predatory similarity) than between consumer species (similarity measured by shared prey species, or dietary similarity). When relating body mass of prey and predators, slopes of major axis regressions within taxonomic groups differ markedly from the global pattern; similar differences between taxonomic levels appear when exploring the relationship between body mass of predators and the range in body mass of their prey, and vice versa. These results are important to understand how evolutionary processes shaping body sizes can affect food-web structure.  相似文献   

12.
An ongoing study initiated in August 1990 investigated the effects of disturbances (organic mulching, cultivation, herbicides) on the detritus food-web in annual (maize) and perennial (asparagus) cropping systems. In this paper we attempt to simultaneously assess the functional and taxonomic structure of various components of this food-web. Biota in the perennial system was the most responsive to disturbance. The microflora was strongly influenced by mulching, and through tritrophic effects caused increases in top predatory but not most microbe-feeding nematodes. These effects have become increasingly apparent as the study has progressed and, in the asparagus site, have worked their way down the soil profile over time. Cultivation in the asparagus site caused large increases in bacterial-feeding nematodes, probably due to the high weed levels which developed during the winter months under that treatment. Evidence appears to exist for a cascade effect operating due to top down effects of nematodes on lower trophic levels. Ordination analysis of the nematode data demonstrated that nematode populations were more closely related to the state of environmental factors at earlier samplings than at contemporary samplings, and that the linkages between the nematode and environmental data sets strengthened over time. For both the nematode and soil-associated beetle data distinct assemblages of organisms were found in the mulched plots; distinct assemblages of nematode genera also emerged in the cultivated asparagus plots after two years. The soil-associated macrofauna was usually linked to high weed and surface organic residue levels. Species diversity of soil associated nematodes was not particularly responsive to disturbance while that of the soil-associated beetles was strongly enhanced by mulching and (sometimes) high weed levels. Approaches based on either functional group or species composition data emerged in our study as reasonably sensitive indicators for assessing the response of the soil biota to disturbance.  相似文献   

13.
Human-mediated disturbances such as fishing, habitat modification, and pollution have resulted in significant shifts in species composition and abundance in marine ecosystems which translate into degradation of food-web structure. Here, we used a comparative ecological modelling approach and data from two food webs (North-Central Adriatic and South Catalan Sea) and two time periods (mid-late 1970s and 1990s) in the Mediterranean Sea to evaluate how changes in species composition and biomass have affected food-web properties and the extent of ecosystem degradation. We assembled species lists and ecological information for both regions and time periods into stochastic structural and mass-balance food-web models, and compared the outcomes of 22 food-web properties. Our results show strong similarities in structural food-web properties between the North-Central Adriatic and South Catalan Seas indicating similar ecosystem structure and levels of ecological degradation between regions and time periods. In contrast, a comparison with other published marine food webs (Caribbean, Benguela, and US continental shelf) suggested that Mediterranean webs are in an advanced state of ecological degradation. This was reflected by lower trophic height, linkage density, connectance, omnivory, species involved in looping, trophic chain length and fraction of biomass at higher trophic levels, as well as higher generality and fraction of biomass at lower trophic levels. An analysis of robustness to simulated species extinction revealed lower robustness to species removals in Mediterranean webs and corroborated their advanced state of degradation. Importantly, the two modelling approaches used delivered comparable results suggesting that they both capture fundamental information about how food webs are structured. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then incubated in laboratory microcosms at two levels of nutrients. Patterns of carbon flow for leaf disks colonized with the full microbial assemblage were compared with those colonized by bacteria but in which fungi were greatly reduced by placing leaf disks in colonization chambers sealed with membrane filters to exclude aquatic hyphomycete conidia but not bacterial cells. On leaves colonized by the full microbial assemblage, elevated nutrient concentrations stimulated fungi and bacteria to a similar degree. Peak fungal and bacterial biomass increased by factors of 3.9 and 4.0; cumulative production was 3.9 and 5.1 times higher in the high nutrient in comparison with the low nutrient treatment, respectively. Fungi dominated the total microbial biomass (98.4 to 99.8%) and cumulative production (97.3 and 96.5%), and the fungal yield coefficient exceeded that of bacteria by a factor of 36 and 27 in low- and high-nutrient treatments, respectively. Consequently, the dominant role of fungi in leaf decomposition did not change as a result of nutrient manipulation. Carbon budgets indicated that 8% of leaf carbon loss in the low-nutrient treatment and 17% in the high-nutrient treatment were channeled to microbial (essentially fungal) production. Nutrient enrichment had a positive effect on rate of leaf decomposition only in microcosms with full microbial assemblages. In treatments where fungal colonization was reduced, cumulative bacterial production did not change significantly at either nutrient level and leaf decomposition rate was negatively affected (high nutrients), suggesting that bacterial participation in carbon flow from decaying leaf litter is low regardless of the presence of fungi and nutrient availability. Moreover, 1.5 and 2.3 times higher yield coefficients of bacteria in the reduced fungal treatments at low and high nutrients, respectively (percentage of leaf carbon loss channeled to bacterial production), suggest that bacteria are subjected to strong competition with fungi for resources available in leaf litter.  相似文献   

15.
Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient-enrichment effects within streams and rivers. We conducted a meta-analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food-web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rate versus state variable and experiment type, and were greater in flume and whole-stream experiments than in experiments using nutrient-diffusing substrata. Generally, nutrient-enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food-web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.  相似文献   

16.
Bacterial and fungal decomposers of aquatic plant litter may exhibit either synergistic or antagonistic interactions, which are likely to influence microbial growth as well as the decomposition of litter and, eventually, the carbon metabolism of aquatic systems. To elucidate such interactions, we inoculated decomposing Phragmites culms in microcosms with fungal isolates and with natural communities of bacteria and fungi in different combinations. The development of fungal and bacterial biomass and the carbon dynamics were studied during several months of degradation. The results show a bilateral antagonistic relationship between bacteria and fungi. After 3 months, fungal biomass accumulation was approximately 12 times higher in the absence than in the presence of bacteria. Bacterial biomass accumulation was about double in the absence of fungi compared to when fungi were present. Similar interactions developed between a natural assemblage of bacteria and five different fungal strains isolated from Phragmites litter (three identified hyphomycetes and two unidentified strains). Despite the great difference in biomass development between the treatments, the carbon metabolism was similar regardless of whether fungi and/or bacteria were present alone or in coexistence. We suggest that the antagonism between bacteria and fungi is an important controlling factor for microbial colonization and growth on aquatic plant litter.  相似文献   

17.
Microcosm experiments showed that the microbial biomass and the respiration activity in soil were regulated by nematodes. Depending on nematode number and plant residue composition, the trophic activity of nematodes can either stimulate or inhibit microbial growth and respiration as compared to soil containing no nematodes. The stimulating effect was observed when nitrogen-free (starch) or low-nitrogen (wheat straw, C : N = 87) organic substrates were applied. Inhibition occurred when a substrate rich in nitrogen (alfalfa meal, C : N = 28) was decomposed and the nematode population exceeded the naturally occurring level. A conceptual model was developed to describe trophic regulation by microfauna (nematodes) of the microbial productivity and respiration ctivity and decomposition of not readily decomposable organic matter in soil. The stimulating and inhibiting influence of microfauna on soil microorganisms was not a linear function of the rate of microbial consumption by nematodes. These effects are largely associated with the induced change in the physiological state of microorganisms rather than with the mobilization of biogenic elements from the decomposed microbial biomass.  相似文献   

18.
Microcosm experiments showed that the microbial biomass and the respiration activity in soil were regulated by nematodes. Depending on nematode number and plant residue composition, the trophic activity of nematodes can either stimulate or inhibit microbial growth and respiration as compared to soil containing no nematodes. The stimulating effect was observed when nitrogen-free (starch) or low-nitrogen (wheat straw, C:N = 87) organic substrates were applied. Inhibition occurred when a substrate rich in nitrogen (alfalfa meal, C:N = 28) was decomposed and the nematode population exceeded the naturally occurring level. A conceptual model was developed to describe trophic regulation by microfauna (nematodes) of the microbial productivity and respiration activity and decomposition of not readily decomposable organic matter in soil. The stimulating and inhibiting influence of microfauna on soil microorganisms was not a linear function of the rate of microbial consumption by nematodes. These effects are largely associated with the induced change in the physiological state of microorganisms rather than with the mobilization of biogenic elements from the decomposed microbial biomass.  相似文献   

19.
In food-web studies, parasites are often ignored owing to their insignificant biomass. We provide evidence that parasites may affect trophic transfer in aquatic food webs. Many phytoplankton species are susceptible to parasitic fungi (chytrids). Chytrid infections of diatoms in lakes may reach epidemic proportions during diatom spring blooms, so that numerous free-swimming fungal zoospores (2-3 microm in diameter) are produced. Analysis shows that these zoospores are rich in polyunsaturated fatty acids and sterols (particularly cholesterol), which indicates that they provide excellent food for zooplankters such as Daphnia. In life-table experiments using the large diatom Asterionella formosa as food, Daphnia growth increased significantly in treatments where a parasite was present. By grazing on the zoospores, Daphnia acquired important supplementary nutrients and were able to grow. When large inedible algae are infected by parasites, nutrients within the algal cells are consumed by these chytrids, some of which, in turn, are grazed by Daphnia. Thus, chytrids transfer energy and nutrients from their hosts to zooplankton. This study suggests that parasitic fungi alter trophic relationships in freshwater ecosystems and may be the important components in shaping the community and the food-web dynamics of lakes.  相似文献   

20.
Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor diets, it is hypothesized that these ants rely on symbiotic bacteria for nutritional supplementation. In this study, we used cloning and 16S sequencing to further characterize the bacterial flora of several herbivorous ants, while also examining the beta diversity of bacterial communities within and between ant species from different trophic levels. Through estimating phylogenetic overlap between these communities, we tested the hypothesis that ecologically or phylogenetically similar groups of ants harbor similar microbial flora. Our findings reveal: (i) clear differences in bacterial communities harbored by predatory and herbivorous ants; (ii) notable similarities among communities from distantly related herbivorous ants and (iii) similar communities shared by different predatory army ant species. Focusing on one herbivorous ant tribe, the Cephalotini, we detected five major bacterial taxa that likely represent the core microbiota. Metabolic functions of bacterial relatives suggest that these microbes may play roles in fixing, recycling, or upgrading nitrogen. Overall, our findings reveal that similar microbial communities are harbored by ants from similar trophic niches and, to a greater extent, by related ants from the same colonies, species, genera, and tribes. These trends hint at coevolved histories between ants and microbes, suggesting new possibilities for roles of bacteria in the evolution of both herbivores and carnivores from the ant family Formicidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号