首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The translation elongation factor EF-1 alpha of the yeast Saccharomyces cerevisiae is coded for by two genes, called TEF1 and TEF2. Both genes were cloned. TEF1 maps on chromosome II close to LYS2. The location of TEF2 is unknown. TEF2 alone is sufficient to promote growth of the cells as shown with a strain deleted for TEF1. TEF1 and TEF2 were originally identified as two strongly transcribed genes, which most likely code for an identical or nearly identical protein as judged from S1 nuclease protection experiments with mRNA-DNA hybrids. The DNA sequence analysis of TEF1 allowed the prediction of the protein sequence. This was shown, by a search in the Dayhoff protein data bank, to represent the translation elongation factor EF-1 alpha due to the striking similarity to EF-1 alpha from the shrimp Artemia. A search for TEF1 homologous sequences in several yeast species shows, in most cases, duplicated genes and a much higher sequence conservation than among genes encoding amino acid biosynthetic enzymes.  相似文献   

6.
Genes for elongation factor EF-1 alpha in the brine shrimp Artemia   总被引:5,自引:0,他引:5  
Neurospora crassa had a heat-stable (up to 95 degrees C), soluble cyclic nucleotide phosphodiesterase (PDE). Both unheated and heat-stable PDE activities were inhibited by micromolar concentrations of Ca2+. This inhibition was reversed by EGTA or EDTA in molar excess of the Ca2+ concentration. Calmodulin was not involved in the Ca2+ inhibition, nor was Ca2+ inhibition of the heat-stable PDE due to cleavage inactivation of the enzyme by a Ca2+-stimulated protease. In addition to Ca2+, several other cations inhibited the activity of the heat-stable enzyme. Cyclic AMP and cGMP, but not 2'3' cAMP were substrates for both unheated and heat-stable PDEs. This is the first report of a PDE which is inhibited by micromolar concentrations of Ca2+.  相似文献   

7.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

8.
9.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

10.
Using low stringency hybridisation with a Drosophila melanogaster EF-1 alpha gene fragment we have isolated a genomic DNA clone encoding elongation factor 1 alpha (EF-1 alpha) from Apis mellifera. The hybridising Apis mellifera sequence could be delineated to two small EcoRI fragments that were also revealed by genomic Southern hybridisation. By comparison with the corresponding Drosophila melanogaster data the complete translational reading frame has been deduced. It is interrupted by two intervening sequences of 220 and about 790 nucleotides. Comparison with known eucaryotic EF-1 alpha sequences further confirms that certain amino acid sequences seem to be invariable within the EF-1 alpha protein family.  相似文献   

11.
We have determined the complete nucleotide sequence for TEF-1, one of three genes coding for elongation factor (EF)-1 alpha in Mucor racemosus. The deduced EF-1 alpha protein contains 458 amino acids encoded by two exons. The presence of an intervening sequence located near the 3' end of the gene was predicted by the nucleotide sequence data and confirmed by alkaline S1 nuclease mapping. The amino acid sequence of EF-1 alpha was compared to the published amino acid sequences of EF-1 alpha proteins from Saccharomyces cerevisiae and Artemia salina. These proteins shared nearly 85% homology. A similar comparison to the functionally analogous EF-Tu from Escherichia coli revealed several regions of amino acid homology suggesting that the functional domains are conserved in elongation factors from these diverse organisms. Secondary structure predictions indicated that alpha helix and beta sheet conformations associated with the functional domains in EF-Tu are present in the same relative location in EF-1 alpha from M. racemosus. Through this comparative structural analysis we have predicted the general location of functional domains in EF-1 alpha which interact with GTP and tRNA.  相似文献   

12.
cDNA as well as amino acid sequencing has revealed the complete primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. A comparison with the published sequences of bacterial EF-Tu, mitochondrial EF-Tu and chloroplastic EF-Tu shows that distinct areas of these polypeptide chains are conserved in evolution. The evolutionary distance between prokaryotic and eukaryotic types of EF-Tu is larger than among bacterial and organellar EF- Tus . A number of regions present in both EF-Tu and EF-G from Escherichia coli are also found in EF-1 alpha from Artemia.  相似文献   

13.
14.
A bacterial cDNA clone was identified carrying one third of the nucleotides coding for elongation factor EF-1 alpha from the brine shrimp Artemia. The sequence of codons corresponds with the known sequence of amino acids of EF-1 alpha in the region involved.  相似文献   

15.
In the preceding papers, we showed that one of the two complementar factors of polypeptide chain elongation factor 1 (EF-1) from pig liver, EF-1alpha, functionally corresponds to bacterial EF-Tu (Nagata, S., Iwasaki, K., and Kaziro, Y. (1976) Arch. Biochem. Biophys. 172, 168), while the other, EF-1betagamma, as well as one of its subunits, EF-1beta, corresponds to bacterial EF-Ts (Motoyoshi, K. and Iwasaki, K. (1977) J. Biochem. 82, 703). Therefore, the interaction between EF-1alpha and EF-1 betagamma or EF-1beta was was examined and the following results were obtained. i) EF-1betagamma catalytically promoted the exchange of [14C]GDP bound to EF-1alpha with exogenous [3H]GDP. ii). In the absence of the exogenous guanine nucleotide, EF-1betagamma as well as EF-1beta could displace GDP bound to EF-1alpha to form an EF-1alpha.EF-1betagamma as well as an EF-1alpha.EF-1beta complex. iii) The occurrence of EF-1alpha.EF-1betagamma and EF-1alpha.EF-1beta complexes was demonstrated by gel filtration on Sephadex G-150. These results strongly indicate that the mechanism of the action of EF-1betagamma or EF-1beta in converting EF-1alpha.GDP into EF-1alpha.GTP is analogous to bacterial EF-Ts, and the reaction is accomplished by the following reactions; EF-1alpha.GDP + EF-1betagamma (or EF-1beta) in equilibrium EF-1alpha.EF-1betagamma (or EF-1beta) + GDP; EF-1alpha.EF-1beta (or EF-1beta) + GTP IN EQUILIBRIUM EF-1alpha.GTP + EF-1betagamma (or EF-1beta).  相似文献   

16.
17.
Volatile factor involved in the dimorphism of Mucor racemosus.   总被引:10,自引:8,他引:2       下载免费PDF全文
Both hyphal and yeastlike development of Mucor racemosus and M. rouxii were demonstrated under 100% N2. Under standardized conditions in yeast extract-peptone-glucose medium, the morphology depended on the N2 flow rate and not on the glucose concentration. The effect was related to the rate of flushing of the atmosphere over the culture medium. The results indicate that a volatile compound produced by Mucor is involved in morphogenesis.  相似文献   

18.
19.
20.
The cytoplasmic peptide elongation factor, EF-1 alpha, is anchored at the endoplasmic reticulum membrane by phosphatidylinositol via ethanolamine bridging presumably to Asp306 of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号