首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of growth on work output, energy consumption and efficiency during repetitive dynamic contractions was determined using extensor digitorum longus muscles of 40-, 60-, 120- and 700-day-old male Wistar rats. When work output of each contraction was normalized to the work output of the first contraction it was found that work output initially increased over the first 10–20 contractions by approximately 8% in each age group. Thereafter a faster decrease in work output was found in the youngest group (approximately 2% each contraction) compared to the older groups (approximately 0.7% each contraction). After 40 contractions the reduction in work output was significantly different only between the youngest group and the two oldest groups (–30% vs –5%). These differences in fatigue were not associated with differences in adenosine 5-triphosphate and phosphocreatine concentrations or in lactate production. Total work output and high-energy phosphate consumption increased by approximately 555% and 380% from age 40 to 120 days, respectively. Consequently, efficiency was significantly higher (approximately 32%) in the older groups compared to 40-day-old animals. Normalized for muscle mass, mean rate of high-energy phosphate consumption was similar in all groups whereas mean power output was significantly lower in the youngest group (approximately 46%). Thus, the difference in efficiency between the young and the other groups may be attributed to a lower external power production in the youngest group rather than changes in energy turnover.  相似文献   

2.
The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1-4 Hz). Experiments were performed in vitro (27 degrees C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was approximately 15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was approximately 10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.  相似文献   

3.
Force generation and ATP utilization under anaerobic conditions were studied in the quadriceps femoris muscle of six volunteers. Electrical stimulation (20 Hz) was used to produce contractions with a duration of 0.8 s in one leg and contractions with a duration of 3.2 s in the other leg. The two procedures were designed to give the same total contraction time of 51 s and used the same number of stimulation pulses. Muscle biopsies were taken at rest and after 22 and 51 s of work and analyzed for ATP, phosphocreatine, and glucolytic intermediates. The results were compared with previous studies on continuous and intermittent stimulation. Fatigue developed significantly faster with contractions of short duration, and the energy cost was higher. Since force at the end of stimulation had a negative correlation to ATP utilization, there is no indication that the energy resources limit force generation. By comparison of stimulations producing the same amount of isometric work but with a different number of contractions, we estimate that the energy cost for activation and relaxation of a 1-s contraction is approximately 37% of the total ATP consumption.  相似文献   

4.
In activities such as running, many muscles of the lower extremities appear to be actively stretched before they are allowed to shorten. In this study we investigated the effect of an active pre-stretch on the fatigability of muscles. Thus muscle contractions were compared in which shortening was preceded by an active isometric phase or by an active stretch. Rat medial gastrocnemius muscle-tendon complexes (with arrested blood flow) performed a series of ten repeated contractions (1.s-1) with either an active stretch or an isometric phase preceding the shortening. Contraction duration (0.45 s), and shortening duration (0.3 s), distance (6 mm) and velocity (20 mm.s-1) were the same in both types of contraction. Work output during the ten shortening phases was approximately 40% higher in the contractions with an active pre-stretch; in contrast, high-energy phosphate utilization was similar. Over the ten repeated contractions reduction of work output during the shortening phases of both types of contraction was similar in absolute terms (approx. 9.5 mJ). It is suggested that all the extra work performed during the shortening phases after a pre-stretch originated from sources other than cross-bridge cycling, which are hardly affected by fatigue. However, reduction of work output in relative terms, which is how the reduction is often expressed in voluntary exercise, was less after a pre-stretch (26% vs 32%), giving the impression of protection against fatigue by an active pre-stretch.  相似文献   

5.
The magnitude of the blood flow response to exercise has been linked to both the contractile work performed and the metabolic cost of the activity. Under certain conditions, contractile work and metabolic cost may be dissociated. This study examined the blood flow response to trains of contractions when contraction duration was manipulated under conditions of similar tension-time indexes (isometric analog of work). Previous investigations have shown that trains of short-duration contractions have a greater ATP utilization, which may result from an augmented ion transport required for muscle activation and relaxation. On the basis of these findings, we hypothesized that the blood flow response would be greater to a train of short-duration contractions than a train of long-duration contractions. Canine gastrocnemius-plantaris muscle (n = 8) was isolated, and blood flow assessed with an ultrasound flow probe placed around the popliteal artery. The sciatic nerve was stimulated to produce two contraction protocols that resulted in similar contraction-to-rest ratios: short duration: 0.25 s/0.75 s vs. long duration: 1 s /3 s. In accord with the design of the experiment, the tension-time indexes were identical for the two contraction protocols (short: 18.6 +/- 1.0 vs. long: 18.6 +/- 1.0 kN.s). Steady-state oxygen consumption was greater in the short-duration contractions (17.2 +/- 0.9 ml.100 g(-1).min(-1)) than in the long-duration contractions (11.7 +/- 0.7 ml.100 g(-1).min(-1)). Similarly, the steady-state blood flow was greater in contractions of short duration (125 +/- 7 ml/min) compared with long-duration contractions (92 +/- 7 ml/min). Contractions of short duration resulted in significantly higher oxygen consumptions and blood flows compared with contractions of long duration despite the same total contractile work. The blood flow response to muscle contraction appears to be more closely associated with muscle metabolism than contractile work performed.  相似文献   

6.
The effects of muscle contraction frequency on blood flow to the calf muscle (Qcalf) were studied in six female subjects, who performed dynamic plantar flexions at frequencies of 20, 40, 60, 80 and 100 contractions.min-1, in a supine position. The Qcalf measured by a mercury-in-rubber strain gauge plethysmograph, increased as contraction frequency increased and reached a peak at 60-80 contractions.min-1. After 100 plantar flexions at 60 contractions.min-1, the mean Qcalf was 30.95 (SEM 4.52) ml.100 ml-1.min-1. At 100 contractions.min-1, however, it decreased significantly compared with that at 60 contractions.min-1 at a specified time (2 min or exhaustion) or after a fixed amount of work (100 contractions). The contraction frequency at which Qcalf reached a peak depended on the duration of exercise. The heart rate showed its highest mean value at 60 contractions.min-1 and decreased significantly at 100 contractions.min-1. The mean blood pressure was lower at 100 contractions.min-1 than at 60 contractions.min-1. The relaxation period between contractions, measured by recording the electromyogram from the gastrocnemius muscles, shortened markedly as the frequency increased; the mean value at 100 contractions.min-1 was 0.14 (SEM 0.02) s, which corresponded to 35.7% of the contraction time. This shortened relaxation period between contractions should have led to the inhibition of exercise hyperaemia at the higher contraction frequencies.  相似文献   

7.
Thirty untrained subjects (group 1: 10 female, 20-30 years; group 2: 10 female, 36-46 years; group 3: 10 males, 20-30 years) performed dynamic hand work on a hand-grip dynamometer at loads varying from 20 to 100% MVC and three different working frequencies (20, 40, and 60 cpm). The mechanical muscle activity, the iEMG and the R-R interval were measured throughout the exercise. Before and after each exercise, the maximal hand-grip force (MVC) was determined together with the iEMG and the R-R interval. With the loads increasing gradually, the mean values of the duration of the contraction phase and of the iEMG of the four muscles increased in all test groups, but the duration of the rest phase and R-R interval decreased. Through an Analysis of Variance, evidence of systematic differences between the test groups was significant for the R-R interval only, while the effects of the loads (with exception of the rest phase) and of the working frequency proved significant for all parameters. The MVC, the iEMG and the R-R interval measured before and after the exercise did not show significant differences. This indicates that the exercise was not fatiguing.  相似文献   

8.
Human muscle function following prolonged eccentric exercise   总被引:4,自引:0,他引:4  
4 subjects performed repeated eccentric contractions with leg extensors during prolonged downhill walking (-25% gradient) at 6.44 km.h-1 until collapse due to muscle weakness (range of exercise duration 29 to 40 min). During the exercise oxygen uptake rose progressively from approximately 45% of the previously determined VO2max at 10 min to approximately 65% at the end of the exercise. Following the exercise there was an immediate, significant, and sustained reduction in maximal voluntary isometric contraction, and short term (anaerobic) power output measured concentrically on an isokinetic ergometer. These reductions in muscle function persisted for 96 hours post exercise, and were reflected by significant reductions in the tension generated at low frequency (20 Hz) relative to higher frequency (50 Hz) percutaneous stimulation of the quadriceps. All four subjects showed an increase in plasma levels of creatine kinase post eccentric exercise. Performing concentric contractions by walking uphill for one hour at a significantly greater metabolic cost failed to induce comparable reductions in muscle function. These results provide evidence for the consequences of prolonged eccentric work upon dynamic function which complements earlier reports of structural, enzymatic, and static function changes.  相似文献   

9.
This study was undertaken to determine the effect of exercise duration on the time course and magnitude of excess postexercise O2 consumption (EPOC). Six healthy male subjects exercised on separate days for 80, 40, and 20 min at 70% of maximal O2 consumption on a cycle ergometer. A control experiment without exercise was performed. O2 uptake, respiratory exchange ratio (R), and rectal temperature were monitored while the subjects rested in bed 24 h postexercise. An increase in O2 uptake lasting 12 h was observed for all exercise durations, but no increase was seen after 24 h. The magnitude of 12-h EPOC was proportional to exercise duration and equaled 14.4 +/- 1.2, 6.8 +/- 1.7, and 5.1 +/- 1.2% after 80, 40, and 20 min of exercise, respectively. On the average, 12-h EPOC equaled 15.2 +/- 2.0% of total exercise O2 consumption (EOC). There was no difference in EPOC:EOC for different exercise durations. A linear decrease with exercise duration was observed in R between 2 and 24 h postexercise. No change was observed in recovery rectal temperature. It is concluded that EPOC increases linearly with exercise duration at a work intensity of 70% of maximal O2 consumption.  相似文献   

10.
This study investigated the effects of exercise training duration on the myosin heavy chain (MHC) isoform distribution in rat locomotor muscles. Female Sprague-Dawley rats (120 days old) were assigned to either a sedentary control group or to one of three endurance exercise training groups. Trained animals ran on a treadmill at approximately 75% maximal O2 uptake for 10 wk (4-5 days/wk) at one of three different exercise durations (30, 60, or 90 min/day). Training resulted in increases (P < 0.05) in citrate synthase activity in the soleus and extensor digitorum longus in both the 60 and 90 min/day duration groups and in the plantaris (Pla) in all three exercise groups. All durations of training resulted in a reduction (P < 0.05) in the percentage of MHCIIb and an increase (P < 0.05) in the percentage of MHCIIa in the Pla. The magnitude of change in the percentage of MHCIIb in the Pla increased as a function of the training duration. In the extensor digitorum longus, 90 min of daily exercise promoted a decrease (P < 0.05) in percentage of MHCIIb and increases (P < 0.05) in the percentages of MHCI, MHCIIa, and MHCIId/x. Finally, training durations >/=60 min resulted in an increase (P < 0.05) in the percentage of MHCI and a concomitant decrease (P < 0.05) in the percentage of MHCIIa in the soleus. These results demonstrate that increasing the training duration elevates the magnitude of the fast-to-slow shift in MHC phenotype in rat hindlimb muscles.  相似文献   

11.
To test for evidence of a muscle pump effect during steady-state upright submaximal knee extension exercise, seven male subjects performed seven discontinuous, incremental exercise stages (3 min/stage) at 40 contractions/min, at work rates ranging to 60-75% peak aerobic work rate. Cardiac cycle-averaged muscle blood flow (MBF) responses and contraction-averaged blood flow responses were calculated from continuous Doppler sonography of the femoral artery. Net contribution of the muscle pump was estimated by the difference between mean exercise blood flow (MBFM) and early recovery blood flow (MBFR). MBFM rose in proportion with increases in power output with no significant difference between the two methods of calculating MBF. For stages 1 and 5, MBFM was greater than MBFR; for all others, MBFM was similar to MBFR. For the lighter work rates (stages 1-4), there was no significant difference between exercise and early recovery mean arterial pressure (MAP). During stages 5-7, MAP was significantly higher during exercise and fell significantly early in recovery. From these results we conclude that 1) at the lightest work rate, the muscle pump had a net positive effect on MBFM, 2) during steady-state moderate exercise (stages 2-4) the net effect of rhythmic muscle contraction was neutral (i.e., the impedance due to muscle contraction was exactly offset by the potential enhancement during relaxation), and 3) at the three higher work rates tested (stages 5-7), any enhancement to flow during relaxation was insufficient to fully compensate for the contraction-induced impedance to muscle perfusion. This necessitated a higher MAP to achieve the MBFM.  相似文献   

12.
The effects of aging on motoneuron firing rates and muscle contractile properties were studied in tibialis anterior muscle by comparing results from six young (20.8 +/- 0.8 yr) and six old men (82.0 +/- 1.7 yr). For each subject, data were collected from repeated tests over a 2-wk period. Contractile tests included maximal voluntary contraction (MVC) with twitch interpolation and stimulated twitch contractions. The old men had 26% lower MVC torque (P < 0.01) than did the young men, but percent activation was not different (99.1 and 99.3%, respectively). Twitch contraction durations were 23% longer (P < 0.01) in the old compared with the young men. During a series of repeated brief steady-state contractions at 10, 25, 50, 75, and 100% MVC, motor unit firing rates were recorded. Results from approximately 950 motor unit trains in each subject group indicated that at all relative torque levels mean firing rates were 30-35% lower (P < 0.01) in the old subjects. Comparisons between young and old subjects' mean firing rates at each of 10%, 50%, and MVC torques and their corresponding mean twitch contraction duration yielded a range of moderate-to-high correlations (r = -0.67 to -0.84). That lower firing rates were matched to longer twitch contraction durations in the muscle of old men, and relatively higher firing rates were matched with shorter contraction times from the young men, indirectly supports the neuromuscular age-related remodeling principle.  相似文献   

13.
Previous studies in isolated muscle preparations have shown that muscle blood flow becomes compromised at higher contraction frequencies. The purpose of this study was to examine the effect of increases in contraction frequency and muscle tension on mean blood flow (MBF) during voluntary exercise in humans. Nine male subjects [23.6 +/- 3.7 (SD) yr] performed incremental knee extension exercise to exhaustion in the supine position at three contraction frequencies [40, 60, and 80 contractions/min (cpm)]. Mean blood velocity of the femoral artery was determined beat by beat using Doppler ultrasound. MBF was calculated by using the diameter of the femoral artery determined at rest using echo Doppler ultrasound. The work rate (WR) achieved at exhaustion was decreased (P < 0.05) as contraction frequency increased (40 cpm, 16.2 +/- 1.4 W; 60 cpm, 14.8 +/- 1.4 W; 80 cpm, 13.2 +/- 1.3 W). MBF was similar across the contraction frequencies at rest and during the first WR stage but was higher (P < 0.05) at 40 than 80 cpm at exercise intensities >5 W. MBF was similar among contraction frequencies at exhaustion. In humans performing knee extension exercise in the supine position, muscle contraction frequency and/or muscle tension development may appreciably affect both the MBF and the amplitude of the contraction-to-contraction oscillations in muscle blood flow.  相似文献   

14.
The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.  相似文献   

15.
The effects of differing durations of daily exercise on macrophage functions in mice were studied. Male ICR mice aged 4 wk were divided into five groups: a nonexercise group (control) and four exercise groups with differing daily exercise durations of 15--120 min (Exr groups). The exercise applied was 5 days/wk treadmill running at 13 m/min for 12 wk. The potentiation of the phagocytosis function of the reticuloendothelial system and the glucose consumption of peritoneal macrophages in the Exr 30, 60, and 120 groups were significantly higher than those in the control group. Superoxide anion production of peritoneal macrophages in both the absence and the presence of phorbol 12-myristate 13-acetate in the Exr 60 and 120 groups was significantly higher than that in the control group. The acid phosphatase and beta-glucuronidase activities of peritoneal macrophages in the Exr 30, 60, and 120 groups were significantly increased. These results suggest that treadmill running exercise for at least 30 min/day (30--120 min) effectively enhances macrophage functions in mice. These data provide preliminary evidence indicating that chronic exercise-induced increases in phagocytic activity exhibit a dose-dependent relationship with exercise duration.  相似文献   

16.
We sought to determine the cardiovascular responses to increasing exercise intensities in postmenopausal women with different physical activity levels and hormone replacement therapy (HRT) status. Forty-four women (11 sedentary, 19 physically active, 14 master athletes; 24 not on HRT, 20 on HRT) completed treadmill exercise at 40, 60, 80, and 100% of maximal oxygen consumption. Oxygen consumption, heart rate, blood pressure, and cardiac output, determined via acetylene rebreathing, were measured at each exercise intensity. HRT did not affect cardiovascular hemodynamics. Stroke volume (SV) decreased significantly between 40 and 100% of maximal oxygen consumption in all groups, and the decrease did not differ among groups. The greater oxygen consumption of the athletes at each intensity was due to their significantly greater cardiac output, which was the result of a significantly greater SV, compared with both of the less active groups. The athletes had significantly lower total peripheral resistance at each exercise intensity than did the two less active groups. There were no consistent significant hemodynamic differences between the physically active and sedentary women. These results indicate that SV decreases in postmenopausal women as exercise intensity increases to maximum, regardless of their habitual physical activity levels or HRT status.  相似文献   

17.
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.  相似文献   

18.
Movements generated by muscle contraction generally include periods of muscle shortening and lengthening as well as force development in the absence of external length changes (isometric). However, in the specific case of resistance exercise training, exercises are often intentionally designed to emphasize one of these modes. The purpose of the present study was to objectively evaluate the relative effectiveness of each training mode for inducing compensatory hypertrophy. With the use of a rat model with electrically stimulated (sciatic nerve) contractions, groups of rats completed 10 training sessions in 20 days. Within each training session, the duration of the stimulation was equal across the three modes. Although this protocol provided equivalent durations of duty cycle, the torque integral for the individual contractions varied markedly with training mode such that lengthening > isometric > shortening. The results indicate that the hypertrophy response did not track the torque integral with mass increases of isometric by 14%, shortening by 12%, and lengthening by 11%. All three modes of training resulted in similar increases in total muscle DNA and RNA. Isometric and shortening but not lengthening mode training resulted in increased muscle insulin-like growth factor I mRNA levels. These results indicate that relatively pure movement mode exercises result in similar levels of compensatory hypertrophy that do not necessarily track with the total amount of force generated during each contraction.  相似文献   

19.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.  相似文献   

20.
Muscle contraction generates discrete sound bursts.   总被引:1,自引:0,他引:1       下载免费PDF全文
Isolated frog sartorius muscles were stimulated to shorten under lightly loaded conditions. A piezoelectric transducer was placed alongside the muscle to record sounds generated during contraction. Shortening was accompanied by the generation of a series of discrete sound bursts. The bursts were found to be moderately repeatable among successive contractions; 44% repeated from contraction to contraction. The duration of each sound burst was on the order of 400 mus, and the temperature dependence of the interval between successive bursts had a Q10 of approximately 2. Sound intensity was variable: average acoustic power ranged from 0.05-0.4 mW/g, or approximately 1% of the heat generated during contraction. The generation of discrete bursts of sound during contraction, rather than continuous sound, implies that contractile behavior may be discontinuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号