首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated and cultured rat liver sinusoidal endothelial cells (LECs) retain the ability to specifically bind 125I-hyaluronan (HA) and internalize it using a coated pit pathway [Biochem J, 257:875-884, 1989]. Here we have determined the effect of Ca+2 on the binding and endocytosis of HA by LECs. 125I-HA binding to intact LECs at 4 degrees C occurred both in the absence (10 mM EGTA) or the presence of physiologic concentrations of Ca+2 (1.8 mM). However, the specific binding of 125I-HA to LECs increased linearly with increasing Ca+2 concentrations. After permeabilization with the nonionic detergent digitonin, the Ca(+2)-independent HA binding activity increased approximately 743%, while the Ca(+2)-dependent binding activity was enhanced only approximately 46%. Therefore, the Ca(+2)-dependent HA binding activity appears not to be intracellular, whereas the Ca(+2)-independent HA receptor is found both inside LECs and on the cell surface. When LECs were allowed to endocytose 125I-HA at 37 degrees C in 10 mM EGTA or in 1.8 mM Ca+2, no differences were seen in the extent or rate of endocytosis. When LECs were allowed to endocytose 125I-HA in the presence of 10 mM Ca+2, the amount of cell-associated radioactivity increased approximately 20-50-fold. However, this additional cell-associated 125I-HA was not sensitive to hyperosmolarity and was removed by washing the cells in 10 mM EGTA at 4 degrees C. Therefore, the Ca(+2)-dependent cell-associated 125I-HA had accumulated on the cell surface and had not been internalized. From these studies we conclude that LECs have at least two types of specific HA binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Rat liver endothelial cells (LECs) express a membrane-associatedCa2+-dependent hyaluronan-binding activity (CaHA-BP) which isdistinct from the Ca2+-dependent, endocytic LEC HA receptor(Yannariello-Brown et al., J. Cell Biochem., 48, 73–80,1992). The CaHA-BP is specific for a subset of glycosaminoglycans,since Ca2+-dependent binding of 125I-HA ({small tilde}80kDa)to LECs was competed with a 100-fold excess (w/w) of HA, chondroitinsulfate, and heparin, but not with chondroitin. The CaHA-BPactivity on intact LECs was pH-dependent. Optimal binding occurredat pH 6.0; no binding was detected at pH values 5 or 9. 125I-HA,pre-bound in the presence of Ca2+ could also be dissociatedwith an acidic buffer (pH 5.0), as well as the divalent cationchelators EDTA and EGTA. 125I-HA binding was stimulated by divalentcations other than Ca2+ such as Mg2+, Mn2+ and Ba2+; with theexception of Zn2+. A photoaffinity crosslinking reagent (125I-ASD-HA)was used to identify specifically crosslinked polypeptides onLECs. In the absence of Ca2+ and in the presence of EGTA, onlybands at 175/166 kDa were consistently crosslinked. These bandshave been previously identified as the LEC Ca2+-independentendocytic HA receptor (Yannariello-Brown et al., J. Biol. Chem.,267, 20451/20455, 1992). In the presence of Ca2+, crosslinkingwas consistently seen to a 68 kDa polypeptide. Crosslinkingwas competed with a 100-fold excess (w/w) of HA. These and otherdata suggest that a 68 kDa protein is the most likely candidatefor the CaHA-BP in LECs. photoaffinity crosslinking hyaluronan calcium lectin  相似文献   

3.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

4.
B B Olwin  C H Keller  D R Storm 《Biochemistry》1982,21(22):5669-5675
Rabbit skeletal muscle troponin I was covalently labeled with N-dansylaziridine, resulting in a fluorescent labeled protein. This derivative (DANZTnI) and native troponin I (TnI) inhibited calmodulin (CaM) stimulation of bovine heart Ca2+-sensitive cyclic nucleodite phosphodiesterase with identical inhibition constants. Association of DANZTnI with calmodulin was monitored directly by changes in flourescence intensity in the presence of Ca2+ and by changes in fluorescence anisotropy in the absence of Ca2+. Quantitation of the affinity of calmodulin for calmodulin-binding proteins in both the presence and absence of Ca2+ is necessary for prediction of the extent of interaction of both Ca2+ and calmodulin-binding proteins with calmodulin in vivo. The dissociation constants for the DANZTnI-calmodulin-l4Ca2+ and DANZTnI-calmodulin complexes were 20 nM and 70 micrometers, respectively. These dissociation constants define a free energy coupling of-4.84 kcal/mol of troponin I for binding of Ca2+ and troponin I to calmodulin. The Ca2+ dependence for troponin I-calmodulin complex formation predicted from these experimentally determined parameters was closely approximated by the Ca2+ dependence for complex formation between troponin I and fluorescent 5-[[[(iodoacetyl)amino]ethyl]-amino]-1-napthalenesulfonic acid derivatized calmodulin as determined by fluorescence anisotropy. Complex formation occurred over a relatively narrow range of Ca2+ concentration, indicative of positive heterotropic cooperativity for Ca2+ and troponin I binding to calmodulin.  相似文献   

5.
L-selectin (CD62L) is the principal leukocyte adhesion molecule for the high endothelial venules of peripheral lymph nodes. This adhesion has an absolute requirement for calcium ions. Nevertheless, some studies have shown carbohydrate adhesion receptor interactions on lymphocytes and neutrophils, including the L-selectin molecule, that are Ca-independent. In the present study fucoidan, a reportedly Ca2+ independent ligand of L-selectin, and Mabs to human CD62L were coupled to magnetic polystyrene beads (MPB), as a model of leukocyte-surface interactions, and the efficiency of human leukocyte separation was investigated. 30% of Ficoll-purified human mononuclear cells and 75% of dextran-purified human leukocytes (DPHL) were specifically bound by fucoidan-modified MPB in the presence of Ca2+; 55% of dextran-purified leukocytes were specifically bound in the absence of Ca2+. The specific binding was inhibited by an excess of free fucoidan. The data obtained show the presence of Ca-independent adhesion determinants, specific to fucoidan on human leukocytes. No significant specific binding of leukocytes to fucoidan-modified MPB was found after the incubation with fresh human Ca(2+)-depleted whole blood. More than 90% of DPHL were specifically bound to MPB modified with Mabs to human CD62L irrespective of Ca2+ presence. The same degree of separation was achieved after the incubation with fresh human Ca(2+)-depleted-whole blood with anti-CD62L modified beads.  相似文献   

6.
An iodoazido[125I]prazosin analogue was employed to photoaffinity label alpha 1-adrenergic receptors in rat liver plasma membranes. Labeled proteins were separated by gradient polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and (-)-epinephrine displacement of [3H]prazosin binding was concurrently measured in the presence or absence of guanosine 5'-O-(gamma-thiotriphosphate) (GTP[gamma S]). Inclusion of EGTA and/or proteinase inhibitors during membrane preparation and incubation increased the effect of GTP[gamma S] on alpha 1-adrenergic agonist binding and this could be correlated with increased concentrations of a 78 kDa photoaffinity labeled protein. In contrast, omission of EGTA or addition of exogenous Ca2+ diminished or abolished the effect of GTP[gamma S] on binding and caused loss of the 78 kDa form and the appearance of lower molecular weight labeled proteins. Age-dependent differences in GTP[gamma S] effects on alpha 1-adrenergic agonist binding were abolished when membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. However, the 78 kDa photoaffinity labeled protein observed in adult rats (over 225 g body weight) was not apparent in membranes from younger rats (50-75 g), even when the membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. Instead, a 68 kDa species was the major labeled protein. These data suggest that GTP effects on alpha 1-adrenergic agonist binding in rat liver membranes require the presence of either a 68 or 78 kDa alpha 1-adrenergic binding protein. Failure to inhibit proteolysis in the membranes leads to the generation of lower-molecular-weight binding proteins and the loss of GTP effects on alpha 1-adrenergic agonist binding, although [3H]prazosin binding characteristics are not changed. It is suggested that either the proteolyzed forms of the alpha 1-adrenergic receptor are unable to couple to a putative guanine nucleotide-binding regulatory protein, or that such a protein is concurrently proteolyzed and is thus unable to couple to the receptor.  相似文献   

7.
8-azido-ATP, when used in the 0.2–5 μM concentration range, fulfills the criteria for a specific photoaffinity label for the (Ca+Mg)ATPase of sarcoplasmic reticulum. It is a substrate for the enzyme. It is a mixed inhibitor of ATPase activity. When photolyzed at 0° it is an inhibitor of ATPase activity. The photoinduced binding of 8-azido-ATP to the (Ca+Mg)ATPase is promoted by Ca2+. The dependence of the labeling of the (Ca+Mg)ATPase on 8-azido-ATP, Ca2+ and Mg2+ concentrations strongly suggests that 2 classes of sites are labeled. When 10–60 μM 8-azido-ATP was used to label sarcoplasmic reticulum, proteins in addition to the (Ca+Mg)ATPase were labeled.  相似文献   

8.
Bovine adrenal medullae were homogenized in the presence or in the absence of EGTA and different subcellular fractions were prepared by differential and density gradient centrifugations. In the presence of the chelating agent, 69% of the total calmodulin, measured by radioimmunoassay, was present in the cytosol; the rest was bound to different membrane-containing fractions (nuclei, microsomal, and crude granule fraction). When the chelating agent was omitted, 43% of the calmodulin was present in the cytosol, the remaining calmodulin being membrane-bound. Further resolution of the crude granule fraction by sucrose density centrifugation demonstrated that the distribution of calmodulin in the density gradient was similar to the distribution of chromaffin granules rather than to that of mitochondria, Golgi elements, and lysosomes. In this case, there was also more calmodulin bound to chromaffin granules when EGTA was omitted from the density gradient. Experiments with 125I-calmodulin indicated the presence of high-affinity binding sites (KD = 1.3 X 10(-8) M; Bmax = 30 pmol/mg protein) for calmodulin in chromaffin granule membranes. Further, photoaffinity crosslinking experiments with 125I-calmodulin followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography indicated the presence of three calmodulin-binding polypeptide complexes (84,000; 41,000; and 38,000 daltons) in chromaffin granule membranes. These polypeptides were not labelled when either Ca2+ was omitted or an excess of nonradioactive calmodulin was present in the photolysis buffer, indicating the Ca2+ dependency and the specificity of the interaction. On the basis of the results described, it is suggested that the cellular levels of Ca2+ control the cellular distribution of calmodulin and its binding to specific chromaffin granule membrane proteins. Further, it is also suggested that the interactions between calmodulin and granule proteins might play a role in stimulus-secretion coupling.  相似文献   

9.
We and others have suggested previously that the binding of somatostatin to its receptors in the pancreas is regulated by not only somatostatin analogs but also cholecystokinin analogs in proportion to their known biological potencies. To clarify the precise mechanism by which unrelated peptides modulate somatostatin binding, the effect of a phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), or a synthetic diacylglycerol analog, 1-oleyl-2-acetylglycerol (OAG), on [125I-Tyr1]somatostatin binding to pancreatic acinar cell membranes was examined. Pretreatment of pancreatic acini for 120 min at 37 degrees C with 100 ng/ml TPA maximally reduced subsequent labeled somatostatin binding to acinar membranes. The inhibitory effect of TPA on the somatostatin binding was dependent on the dose used or the time and temperature of pretreatment. These effects of TPA were almost mimicked by the treatment of acini with OAG. Scatchard analysis of [125I-Tyr1]somatostatin binding demonstrated that the decrease in the labeled somatostatin binding induced by TPA or OAG pretreatment was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. A specifically labeled single band of Mr = 90,000 obtained with a photoaffinity cross-linking study indicates that the somatostatin-binding sites are the same somatostatin receptor as previously described. Moreover, the intensity of the Mr = 90,000 band was dramatically decreased when acini were treated with increasing concentrations of TPA, a finding consistent with TPA-induced decrease in binding capacity. Such an inhibitory effect of TPA was abolished when pretreatment of acini with TPA was performed in the presence of Ca2+-chelating compounds such as EDTA and EGTA or phospholipid-interacting drugs such as chlorpromazine and tetracaine. Interestingly, the combined treatment of TPA and Ca2+ ionophore A23187 caused synergistic inhibition of the subsequent labeled somatostatin binding to acinar membranes, although Ca2+ ionophore itself almost failed to affect the somatostatin binding. These results suggest, therefore, that TPA or OAG can modulate somatostatin binding to its receptors on rat pancreatic acinar cell membranes, presumably through activation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C); and the activated protein kinase C and intracellular Ca2+ mobilization presumably act to modulate the pancreatic acinar somatostatin receptors synergistically.  相似文献   

10.
Y Doi  F Kim  S Kido 《Biochemistry》1990,29(6):1392-1397
Calcium binding of swine plasma gelsolin was examined. When applied to ion-exchange chromatography, its elution volume was drastically altered depending on the free Ca2+ concentration of the medium. The presence of two classes of Ca2+ binding sites, high-affinity sites (Kd = 7 microM) and low-affinity sites (Kd = 1 mM), was suggested from the concentration dependence of the elution volume. The tight binding sites were specific for Ca2+. The weakly bound Ca2+ could be replaced by Mg2+ once the tight binding sites were occupied with Ca2+. The binding of metal ions was totally reversible. Circular dichroism measurement of plasma gelsolin indicated that most change in secondary structure was associated with Ca2+ binding to the high-affinity sites. Binding of Mg2+ to the low-affinity sites caused a secondary structural change different from that caused by Ca2+ bound to the high-affinity sites. Gel permeation chromatography exhibited a small change in Stokes radius with and without Ca2+. Microheterogeneity revealed by isoelectric focusing did not relate to the presence of two classes of Ca2+ binding sites. These results indicated that plasma gelsolin drastically altered its surface charge property due to binding of Ca2+ or Ca2+, Mg2+ with a concomitant conformational change.  相似文献   

11.
Husic HD  Marcus CA 《Plant physiology》1994,105(1):133-139
A carbonic anhydrase (CA)-directed photoaffinity reagent, 125I-labeled p-aminomethylbenzenesulfonamide-4-azidosalicylamide,was synthesized and shown to derivatize periplasmic CA in the unicellular green alga Chlamydomonas reinhardtii. The photoderivatization of purified C. reinhardtii periplasmic CA or intact C. reinhardtii cells with the reagent resulted in the modification of the large (37 kD) subunit of the enzyme. Photoderivatization of proteins in lysed C. reinhardtii cells also resulted in the specific labeling of a polypeptide of 30 kD. Centrifugation of the cell extract prior to photoaffinity labeling revealed that the labeled peptide was present predominantly in a particulate fraction. The photoaffinity-labeled 30-kD polypeptide was not observed in extracts from a mutant of C. reinhardtii that is believed to be deficient in an intracellular form of CA. These results provide evidence that the 30-kD polypeptide, which is photoaffinity labeled in lysed C. reinhardtii cells, is an intracellular form of CA.  相似文献   

12.
The hyaluronic acid (HA)-rich extracellular matrix (ECM) of the cumulus oophorus is known to facilitate fertilization. It has been suggested that HA may enhance fertilisation in a number of species, and in macaque sperm, HA has been shown to increase the number of acrosome reactions that follow sperm binding to the zona pellucida. In this study, we investigated the effects of HA on intracellular Ca2+ in capacitated cynomolgus macaque sperm. Fluorometry studies using the intracellular Ca2+ indicator Fluo-3 showed that addition of 100 micrograms/ml of HA induced a rapid increase in intracellular Ca2+. This Ca2+ increase (approximately 2-3 times above basal levels) was inhibited by preincubation of sperm with Fab fragments of anti-recombinant PH-20 IgG. The frequency of acrosome reactions in sperm exposed to HA was not above control levels. A synthetic gel was prepared with similar viscosity to the cumulus and with HA trapped in its matrix. Video imaging of individual sperm was used to demonstrate that capacitated sperm swimming into the HA gel had increased intracellular Ca2+ levels. Preincubation of sperm with Fab fragments of anti-PH-20 IgG inhibited the increased intracellular Ca2+ levels induced by the HA gel. Sperm in control gel (no HA) did not show increased intracellular Ca2+, while sperm in gel containing anti-PH-20 IgG showed increased Ca2+ (positive control). Sperm loaded with Fluo-3 were allowed to interact with cynomolgus macaque cumulus masses, and sperm within the cumulus ECM clearly showed increased intracellular Ca2+ that was inhibited when sperm were preincubated in anti-PH-20 Fab. Fluorescein isothiocyanate (FITC)-HA was found to bind to sperm over the acrosomal region, corresponding to PH-20 localisation, and this binding could be inhibited by preincubation of sperm with anti-PH-20 fragments. The results of this study show that HA increases intracellular Ca2+ in macaque sperm through interaction with plasma membrane PH-20. We propose that HA binding to plasma membrane PH-20 induces an aggregation of receptors that in turn results in intracellular signalling. As a result, sperm have higher basal CA2+ levels and are more responsive to induction of the acrosome reaction after binding to the zona pellucida.  相似文献   

13.
Adenosinetriphosphopyridoxal (AP3PL) specifically modifies Lys684 of Ca2(+)-ATPase of sarcoplasmic reticulum (SR-ATPase) in the presence of Ca2+, leading to its inactivation (Yamamoto, H. et al. (1988) J. Biochem. 103, 452-457). We have now investigated the effects of AP3PL on SR-ATPase in the absence of Ca2+. Similarly to its action in the presence of Ca2+, AP3PL inhibited the Ca2(+)-transporting activity in a dose-dependent manner in the absence of Ca2+ as well. ATP and ADP protected SR-ATPase against inactivation by this reagent. One mole of AP3PL was bound per mol of SR-ATPase with concomitant loss of the Ca2(+)-transporting activity. Binding of AP3PL to SR-ATPase was prevented by ATP. AP3PL-labeled SR membranes were digested with thermolysin and labeled thermolytic peptides were purified through C18 reversed-phase HPLC. Two major AP3PL-labeled peptides were obtained in approximately 1:1 ratio; one was an octapeptide corresponding to 679-ValGluProSerHisLys*SerLys-686, and the other, a nonapeptide corresponding to 487-PheSerArgAspSerLys*ArgMetSer-495 (Lys* indicates a labeled Lys residue) of SR-ATPase. Lys684 in the former turned out to be the same as the highly specific target of AP3PL in the presence of Ca2+ which was identified previously. The target site specificity of AP3PL thus changed significantly but not entirely on binding of Ca2+ to SR-ATPase. This indicates that the spatial arrangement around the gamma-phosphoryl group of the bound ATP is affected by Ca2+ ions bound at the transport site. It is also likely that Lys492 and Lys684 are situated close together in the ATP binding site of SR-ATPase.  相似文献   

14.
The macaque sperm surface protein PH-20 is a hyaluronidase, but it also interacts with hyaluronic acid (HA) to increase internal calcium ( [Ca(2+)](i) ) in the sperm cell. A region of the PH-20 molecule, termed Peptide 2 (aa 205-235), has amino acid charge homology with other HA binding proteins. The Peptide 2 sequence was synthesized and two recombinant PH-20 proteins were developed, one containing the Peptide 2 region (G3, aa 143-510) and one without it (E12, aa 291-510). On Western blots, affinity-purified anti-Peptide 2 IgG recognized the 64 kDa band corresponding to PH-20 in acrosome intact sperm and, under reducing conditions, recognized the whole 67 kDa PH-20 and the endoproteolyzed N-terminal fragment of PH-20. HA conjugated to a photoaffinity substrate specifically bound to sperm surface PH-20. Indirect immunofluorescence demonstrated that Fab fragments of anti-Peptide 2 IgG bound to the head of live sperm. Biotinylated HA was bound by Peptide 2 and by sperm extracts in a microplate binding assay, and this binding was inhibited by Fab fragments of anti-Peptide 2 IgG. Biotinylated HA bound to the G3 protein and this binding was inhibited by anti-Peptide 2 Fab, but HA did not bind to the E12 protein. Fab fragments of anti-Peptide 2 IgG inhibited the increase in [Ca(2+)](i) induced in macaque sperm by HA. Our results suggest that the Peptide 2 region of PH-20 is involved in binding HA, which results in the cell signaling events related to the elevation of [Ca(2+)](i) during sperm penetration of the cumulus.  相似文献   

15.
Photoaffinity labelling of Ca2+ channels with [3H]azidopine   总被引:7,自引:0,他引:7  
A 1,4-dihydroypyridine arylazide photoaffinity ligand, [3H]azidopine (50.6 Ci/mmol), has been synthesized. [3H]Azidopine binds reversibly with a Kd of 350 pM to guinea-pig skeletal muscle membranes in the absence of ultraviolet light. The reversible [3H]azidopine binding is inhibited steroselectively by 1,4-dihydropyridines, phenylalkylamine Ca2+ channel blockers and La3+. Covalent incorporation into membrane proteins after photolysis was investigated by sodium dodecyl sulfate polyacrylamide slab gel electrophoresis. [3H]Azidopine is photoincorporated specifically into a protein of Mr approximately 145 000. The covalent labelling of the Mr approximately 145 000 band is inhibited stereoselectively by drugs and cations which block the reversible [3H]azidopine binding. It is suggested that [3H]azidopine is photoincorporated into a subunit of the putative Ca2+ channel.  相似文献   

16.
M M Tucker  M E Nesheim  K G Mann 《Biochemistry》1983,22(19):4540-4546
The Ca2+ dependence of factor Xa binding to phospholipid vesicles was measured in the presence and absence of factor Va. The increase in polarization of a fluorescently labeled derivative of factor Xa, [5-(dimethylamino)-1-naphthalenesulfonyl] glutamylglycylarginyl factor Xa (Dns-EGR-Xa), was used as a probe to measure the interaction of factor Xa with phospholipid. The Ca2+ concentration required for half-maximal binding of Dns-EGR-Xa to phospholipid vesicles was 3.5 X 10(-4) M in the presence of factor Va and 9.5 X 10(-4) M in the absence of factor Va. At a Ca2+ concentration of 5 X 10(-4) M, the binding of Dns-EGR-Xa to phospholipid-bound factor Va was near maximal, whereas there was no detectable interaction of Dns-EGR-Xa with phospholipid alone at this Ca2+ concentration as detected by fluorescence polarization. These results were qualitatively confirmed by high-performance liquid chromatography. The rate of hydrolysis of the factor Xa synthetic substrate, benzoylisoleucylglutamylglycylarginine p-nitroanilide, by factor Xa in the presence of factor Va and phospholipid decreased in a Ca2+-dependent manner. These data were analyzed as fraction of factor Xa bound to the phospholipid. A Ca2+ concentration of 2.7 X 10(-4) M resulted in half-maximal binding by this technique. The relationship observed between rates of prothrombin activation and Ca2+ concentration could be predicted quantitatively from calculations of local enzyme and substrate concentrations.  相似文献   

17.
19F-n.m.r. spectra were measured to investigate the effects of Ca2+ and Zn2+ on the interaction of trifluoperazine (TFP) with three S100 proteins. It was found that TFP binds to S100a and S100ao proteins irrespective of the presence of Ca2+ and Zn2+, while in the presence of Ca2+ the apparent affinity of TFP to the proteins was greater than that in its absence or in the presence of Zn2+. In contrast, the binding affinity of TRP to S100b protein in the presence and absence of metal ions was lower than to S100a and S100ao proteins. These results suggested that TFP binds to each S100 protein in two ways: one is Ca2(+)- or Zn2(+)-dependent specific manner and another is Ca2(+)- or Zn2(+)-independent non-specific manner.  相似文献   

18.
alpha-latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G-protein-coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin-G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with G alpha q/11 and G alpha o but not with G alpha s, G alpha i or G alpha z, indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX-evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca2+, LTX triggers vesicular exocytosis because botulinum neurotoxins E, Cl or tetanus toxin inhibit the Ca(2+)-dependent component of the toxin-evoked release. Based on (i) the known involvement of G alpha q in the regulation of inositol-1,4,5-triphosphate generation and (ii) the requirement for Ca2+ in LTX action, we tested the effect of inhibitors of Ca2+ mobilization on the toxin-evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca(2+)-dependent toxin's action. Thapsigargin, which depletes intracellular Ca2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca2+. On the other hand, clostridial neurotoxins or drugs interfering with Ca2+ metabolism do not inhibit the Ca2(+)-independent component of LTX-stimulated release. In the absence of Ca2+, the toxin induces in the presynaptic membrane non-selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca2+ provided intracellular Ca2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca2+, which then triggers secretion.  相似文献   

19.
ATP-sensitive potassium (K(ATP)) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We have previously reported that Kir6.2 can be directly labeled by 8-azido-[gamma-(32)P]ATP. However, the binding affinity of 8-azido-ATP to Kir6.2 was low probably due to modification at 8' position of adenine. Here we demonstrate that Kir6.2 can be directly photoaffinity labeled with higher affinity by [gamma-(32)P]ATP-[gamma]4-azidoanilide ([gamma-(32)P]ATP-AA), containing an unmodified adenine ring. Photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-AA is not affected by the presence of Mg(2+), consistent with Mg(2+)-independent ATP inhibition of K(ATP) channels. Interestingly, SUR1, which can be strongly and specifically photoaffinity labeled by 8-azido-ATP, was not photoaffinity labeled by ATP-AA. These results identify key differences in the structure of the nucleotide binding sites on SUR1 and Kir6.2.  相似文献   

20.
Dantrolene is a drug that suppresses intracellular Ca(2+) release from sarcoplasmic reticulum (SR) in skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Although its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca(2+) release channel in SR, as a molecular target for dantrolene using the photoaffinity analog [(3)H]azidodantrolene. Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [(3)H]azidodantrolene, indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1 previously shown to affect RyR1 function in vitro and in vivo were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2s, peptides containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [(3)H]azidodantrolene. A monoclonal anti-RyR1 antibody that recognizes RyR1 and its 1400-amino acid N-terminal fragment recognizes DP1 and DP1-2s in both Western blots and immunoprecipitation assays and specifically inhibits [(3)H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in SR. Our results indicate that synthetic domain peptides can mimic a native, ligand-binding conformation in vitro and that the dantrolene-binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino acids 590-609.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号