首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BALB/c IL-2-deficient (IL-2-KO) mice develop systemic autoimmunity, dying within 3 to 5 wk from complications of autoimmune hemolytic anemia. Disease in these mice is Th1 mediated, and IFN-γ production is required for early autoimmunity. In this study, we show that dendritic cells (DCs) are required for optimal IFN-γ production by T cells in the IL-2-KO mouse. Disease is marked by DC accumulation, activation, and elevated production of Th1-inducing cytokines. IL-2-KO DCs induce heightened proliferation and cytokine production by naive T cells compared with wild-type DCs. The depletion of either conventional or plasmacytoid DCs significantly prolongs the survival of IL-2-KO mice, demonstrating that DCs contribute to the progression of autoimmunity. Elimination of Th1-inducing cytokine signals (type 1 IFN and IL-12) reduces RBC-specific Ab production and augments survival, indicating that cytokines derived from both plasmacytoid DCs and conventional DCs contribute to disease severity. DC activation likely precedes T cell activation because DCs are functionally activated even in an environment lacking overt T cell activation. These data indicate that both conventional and plasmacytoid DCs are critical regulators in the development of this systemic Ab-mediated autoimmune disease, in large part through the production of IL-12 and type 1 IFNs.  相似文献   

2.
We analyzed the activation and function of dendritic cells (DCs) in the spleens of diseased, lupus-prone NZM2410 and NZB-W/F1 mice and age-matched BALB/c and C57BL/6 control mice. Lupus DCs showed an altered ex vivo costimulatory profile, with a significant increase in the expression of CD40, decreased expression of CD80 and CD54, and normal expression of CD86. DCs from young lupus-prone NZM2410 mice, before the development of the disease, expressed normal levels of CD80 and CD86 but already overexpressed CD40. The increase in CD40-positive cells was specific for DCs and involved the subset of myeloid and CD8alpha+ DCs before disease onset, with a small involvement of plasmacytoid DCs in diseased mice. In vitro data from bone marrow-derived DCs and splenic myeloid DCs suggest that the overexpression of CD40 is not due to a primary alteration of CD40 regulation in DCs but rather to an extrinsic stimulus. Our analyses suggest that the defect of CD80 in NZM2410 and NZB-W/F1 mice, which closely resembles the costimulatory defect found in DCs from humans with systemic lupus erythematosus, is linked to the autoimmune disease. The increase in CD40 may instead participate in disease pathogenesis, being present months before any sign of autoimmunity, and its downregulation should be explored as an alternative to treatment with anti-CD40 ligand in lupus.  相似文献   

3.
Dendritic cells (DCs) promote immune responses to foreign Ags and immune tolerance to self-Ags. Deregulation of DCs is implicated in autoimmunity, but the molecules that regulate DCs to protect against autoimmunity have remained unknown. In this study, we show that mice lacking the protein tyrosine phosphatase Shp1 specifically in DCs develop splenomegaly associated with more CD11c(+) DCs. Splenic DCs from the mutant mice showed upregulation of CD86 and CCR7 expression and of LPS-induced production of proinflammatory cytokines. The mice manifested more splenic Th1 cells, consistent with the increased ability of their DCs to induce production of IFN-γ by Ag-specific T cells in vitro. The number of splenic CD5(+)CD19(+) B-1a cells and the serum concentrations of Igs M and G2a were also increased in the mutant mice. Moreover, aged mutant mice developed glomerulonephritis and interstitial pneumonitis together with increased serum concentrations of autoantibodies. Shp1 is thus a key regulator of DC functions that protects against autoimmunity.  相似文献   

4.
Hou W  So EY  Kim BS 《PLoS pathogens》2007,3(8):e124
Although persistent viral diseases are a global health concern, the mechanisms of differential susceptibility to such infections among individuals are unknown. Here, we report that differential interactions between dendritic cells (DCs) and virus are critical in determining resistance versus susceptibility in the Theiler murine encephalomyelitis virus-induced demyelinating disease model of multiple sclerosis. This virus induces a chronic demyelinating disease in susceptible mice, whereas the virus is completely cleared in resistant strains of mice. DCs from susceptible mice are more permissive to viral infection, resulting in severe deficiencies in development, expansion, and function, in contrast to DCs from resistant mice. Although protective prior to viral infection, higher levels of type I interferons (IFNs) and IFN-gamma produced by virus-infected DCs from susceptible mice further contribute to the differential inhibition of DC development and function. An increased DC number and/or acquired resistance of DCs to viral infection render susceptible mice resistant to viral persistence and disease progression. Thus, the differential permissiveness of DCs to infectious agents and its subsequent functional and developmental deficiencies determine the outcome of infection- associated diseases. Therefore, arming DCs against viral infection-induced functional decline may provide a useful intervention for chronic infection-associated diseases.  相似文献   

5.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APC) of the immune system, and are critically involved in initiation of immune responses in autoimmune diseases. They can modulate the nature of immune responses to stimulatory or tolerogenic fashion. Previous studies have demonstrated that the administration route of DCs is an important variable in eliciting anti-tumor immunity. In this study we used experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis to compare different protocols of DC delivery in autoimmunity or tolerance induction. Dendritic cells were generated from bone marrow cells of C57BL/6 mice by culturing in the presence of GM-CSF and IL-4 for 7 days, followed by 2 days culture with TNF-alpha. The obtained DCs were pulsed in vitro with myelin oligodendrocyte glycoprotein (MOG) peptide and injected (5 x 10(5) cells/mouse) via the intravenous (i.v.), intraperitoneal (i.p.) or subcutaneous (s.c.) route into female C57BL/6 mice. In some instances pertussis toxin was also injected zero and 48 hours after DC injection. After follow up of the mice pretreated in this way for 4 weeks, in the i.v. group in which no clinical signs of EAE occurred, the mice were immunized with MOG peptide for EAE induction via the common method and the results were compared with mice that were not pre-immunized. Only after three s.c. DC injections with pertussis toxin, the mice showed mild clinical signs of EAE, whereas mice given i.v. or i.p. injections with or without pertussis toxin failed to develop EAE after 4 weeks. Induction of EAE via the common method after three injections of TNF-alpha treated DCs, in i.v. injected groups showed no protection from EAE. It seems that several factors influence the tolerance versus immunity induction by DCs. Our results showed that the administration route of DCs is one of the pivotal factors in DC-based induction of autoimmune diseases.  相似文献   

6.
Stimulated by an agonistic ligand, alpha-galactosylceramide (alphaGalCer), invariant NKT (iNKT) cells are capable of both eliciting antitumor responses and suppressing autoimmunity, while they become anergic after an initial phase of activation. It is unknown how iNKT cells act as either activators or regulators in different settings of cellular immunity. We examined effects of alphaGalCer administration on autoimmune inflammation and characterized phenotypes and functional status of iNKT cells and dendritic cells in alphaGalCer-treated NOD mice. Although iNKT cells became and remained anergic after the initial exposure to their ligand, anergic iNKT cells induce noninflammatory DCs in response to alphaGalCer restimulation, whereas activated iNKT cells induce immunogenic maturation of DCs in a small time window after the priming. Induction of noninflammatory DCs results in the activation and expansion of islet-specific T cells with diminished proinflammatory cytokine production. The noninflammatory DCs function at inflammation sites in an Ag-specific fashion, and the persistence of noninflammatory DCs critically inhibits autoimmune pathogenesis in NOD mice. Anergic differentiation is a regulatory event that enables iNKT cells to transform from promoters to suppressors, down-regulating the ongoing inflammatory responses, similar to other regulatory T cells, through a ligand-dependent mechanism.  相似文献   

7.
Effector functions in tumor resistance by dendritic cells (DCs) are less well characterized. In this study, we describe that the murine DCs upon stimulation with recombinant IL-15 in vitro or in vivo, expresses TNF superfamily member TRAIL which mediates cytotoxicity and growth inhibition against a murine lymphoma called Dalton lymphoma (DL) via apoptosis. Presence of tumor lysate or intact tumor cells significantly reduces the DC mediated tumoricidal effect, possibly via masking and down-regulating TRAIL in DCs. The antitumor effect of DC derived TRAIL was further augmented by deactivation of STAT3 in tumor cells by cucurbitacin I, which makes it more susceptible to DC derived TRAIL Treatment of tumor cells with cucurbitacin I upregulates TRAIL receptor expression in addition to activation of caspases. Compared to naïve DCs, DCs from tumor bearing mice are significantly impaired in TRAIL expression and consequent antitumor functions against DL which was partially restored by activation with IL-15 or LPS. Priming with recombinant IL-15 prolongs the survival of tumor bearing mice treated with cucurbitacin I. Naïve peripheral blood DCs derived from chronic myeloid leukemia (CML) patients have significant impairment in expression of TRAIL and consequent tumoricidal properties against TRAIL sensitive lymphoma cell lines and primary tumor cells compared to normal control.  相似文献   

8.
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.  相似文献   

9.
Tolerogenic dendritic cells represent a promising immunotherapy in autoimmunity. However, the molecular mechanisms that drive tolerogenic DCs functions are not well understood. We used GM-CSF or GM-CSF+IL-4 to generate tolerogenic (GM/DCs) and immunogenic (IL-4/DCs) BMDCs from NOD mice, respectively. GM/DCs were resistant to maturation, produced large amounts of IL-10 but not IL-12p70. GM/DCs displayed a reduced capacity to activate diabetogenic CD8(+) T-cells and were efficient to induce Tregs expansion and conversion. LPS stimulation triggered ERK1/2 activation that was sustained in GM/DCs but not in IL-4/DCs. ERK1/2 and AP-1 were involved in IL-10 production in GM/DCs but not in their resistance to maturation. Supershift analysis showed that NF-κB DNA binding complex contains p52 and p65 in GM/DCs, whereas it contains p52, p65 and RelB in IL-4/DCs. ChIP experiments revealed that p65 was recruited to IL-10 promoter following LPS stimulation of GM/DCs whereas its binding to IL-12p35 promoter was abolished. Our results suggest that immunoregulatory functions of GM/DCs are differentially regulated by ERK1/2, AP-1 and NF-κB pathways.  相似文献   

10.
Dendritic cells (DCs) play major roles in immunosurveillance. In peripheral tissues, 'immature' DCs are dedicated to capturing antigens. Detection of pathogens through Toll-like receptors (TLRs) triggers DC migration to the lymph nodes (LNs), where they acquire a 'mature' phenotype specialized at presenting antigens. However, DCs migrate from tissues and mature even in the absence of overt infections. This has been attributed to detection of commensal flora in the skin, the gut or other peripheral tissues in the steady state. To test this assumption, we have analyzed the DCs contained in the lymphoid organs of germ-free mice and of mice lacking the TLR adapter molecules, MyD88 and TRIF. We show that the proportion and expression of maturation markers in DC immigrants in the LNs of these mice are similar to those in normal mice. These results suggest that DC migration from tissues, followed by their phenotypic maturation, is regulated in the steady state by an inherent program of DC differentiation or by the release of low levels of inflammatory signals from normal tissues.  相似文献   

11.
Fms-like tyrosine kinase 3 ligand (Flt3L) is known as the primary differentiation and survival factor for dendritic cells (DCs). Furthermore, Flt3L is involved in the homeostatic feedback loop between DCs and regulatory T cell (Treg). We have previously shown that Flt3L accumulates in the synovial fluid in rheumatoid arthritis (RA) and that local exposure to Flt3L aggravates arthritis in mice, suggesting a possible involvement in RA pathogenesis. In the present study we investigated the role of Flt3L on DC populations, Tregs as well as inflammatory responses in experimental antigen-induced arthritis. Arthritis was induced in mBSA-immunized mice by local knee injection of mBSA and Flt3L was provided by daily intraperitoneal injections. Flow cytometry analysis of spleen and lymph nodes revealed an increased formation of DCs and subsequently Tregs in mice treated with Flt3L. Flt3L-treatment was also associated with a reduced production of mBSA specific antibodies and reduced levels of the pro-inflammatory cytokines IL-6 and TNF-α. Morphological evaluation of mBSA injected joints revealed reduced joint destruction in Flt3L treated mice. The role of DCs in mBSA arthritis was further challenged in an adoptive transfer experiment. Transfer of DCs in combination with T-cells from mBSA immunized mice, predisposed naïve recipients for arthritis and production of mBSA specific antibodies. We provide experimental evidence that Flt3L has potent immunoregulatory properties. Flt3L facilitates formation of Treg cells and by this mechanism reduces severity of antigen-induced arthritis in mice. We suggest that high systemic levels of Flt3L have potential to modulate autoreactivity and autoimmunity.  相似文献   

12.
Current strategies for cancer gene therapy consist mainly of direct inhibition of tumor cell growth and activation of systemic host defense mechanisms. Conventional chemotherapy and radiotherapy, even considered to be temporally suppressing tumor growth, suppress immune responses; therefore, we examined potential clinical feasibility of virus-mediated tumor destruction, which can rather enhance immunity. We showed that human tumors were more susceptible to adenoviruses (Ad) in which the E1A expression was controlled by a putative tumor promoter than normal cells, and that a replication of the Ad was greater in tumor cells than in normal cells. We also demonstrated that the intratumoral injection of the Ad bearing a tumor promoter inhibited the subsequent tumor growth in vivo. The E1A expression was detected in the tumors injected with the Ad but not in non-tumorous tissues of the same mice. The Ad modified to show the regulated E1A expression is thereby oncolytic in nature. Antitumor immune responses are initiated after the acquisition of putative tumor antigen(s) by dendritic cells (DCs); therefore, enhanced antigen presentation is a crucial step for the early phase of cell-mediated immunity. Destruction of tumors can release the tumor antigens and DCs come to recognize them thereafter. We found that the stimulation of Fas expressed on DCs with Fas ligand (FasL) did not induce apoptosis of DCs but rather enhanced the antigen presentation. Activation of DCs induced production of a number of cytokines, and we showed that the interleukin-12 family secreted from tumors could induce systemic antitumor immunity. We presume that the administration of oncolytic Ad, which can destroy local tumors and subsequently make the putative tumor antigen(s) released from the tumors, stimulation of DCs with the Fas/FasL signal pathway and secretion of DCs-derived cytokines coordinately produce synergistic antitumor effects and that a combinatory application of these procedures can be a possible therapeutic strategy for cancer treatment.This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer” held in Shenzhen, China, on 9–11 December 2005.  相似文献   

13.
Anti-insulin autoimmunity is one of the primary forces in initiating and progressing β-cell destruction in type 1 diabetes. While insulin expression in thymic medullary epithelial cells has been shown to be essential for establishing β-cell central tolerance, the function of insulin expression in antigen-presenting cells (APCs) of hematopoietic lineage remains elusive. With a Cre-lox reporter approach, we labeled Aire-expressing cells with enhanced yellow fluorescent proteins, and found that insulin expression in the spleen was restricted predominantly to a population of Aire(+)CD11c(int)B220(+) dendritic cells (DCs). Targeted insulin deletion in APCs failed to induce anti-islet autoimmunity in B6 mice. In contrast, elevated levels of T cell infiltration into islets were observed in B6(g7) congenic mice when insulin was specifically deleted in their CD11c-expressing DCs (B6(g7)·CD11c-ΔIns mice). Thus, insulin expression in BM-derived, Aire(+) tolerogenic DCs may play an essential role to prevent the activation and expansion of insulin-reactive T cells in the periphery.  相似文献   

14.
We previously reported that CCR2(-/-) mice are susceptible to Mycobacterium tuberculosis infection. Susceptibility was associated with an early and sustained macrophage trafficking defect, followed by delayed recruitment of dendritic cells (DCs) and T cells to the lungs. However, the relative importance of the lack of CCR2 expression by macrophages and DCs vs T cells in susceptibility to infection was unclear. In this study, we used mixed bone marrow transplantation to create mice in which the genotype of the T cells was either CCR2(+/+) or CCR2(-/-) while maintaining the genotype of the myeloid cells as CCR2(+/+). After infection with M. tuberculosis, we found that the genotype of the macrophages and/or DCs, but not that of the T cells, was critical for both T cell and myeloid cell migration to the lungs. Further investigation revealed a critical role for CCR2 in the recruitment of F4/80(dim) macrophages and CD11c(dim/intermediate) DCs to the infected lung.  相似文献   

15.
The mammalian target of rapamycin (mTOR) controls cell growth and survival through two distinct complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although several reports have suggested the involvement of mTORC1 in development and function of dendritic cells (DCs), its physiological roles remain obscure. We therefore established mTORC1 signal-deficient mice lacking Raptor, an essential component of mTORC1 signal, specifically in DC lineage (referred to here as Raptor(DC-/-)). Raptor(DC-/-) mice exhibited cell expansion in specific subsets of DCs such as splenic CD8(+) DCs and intestinal CD11c(+)CD11b(+) DCs. We also found that impaired mTORC1 signal resulted in the suppression of IL-10 production along with enhanced CD86 expression in intestinal CD11c(+)CD11b(+) DCs and that Raptor(DC-/-) mice were highly susceptible to dextran sodium sulfate-induced colitis. Our results uncover mTORC1-mediated anti-inflammatory programs in intestinal CD11c(+)CD11b(+) DCs to limit the intestinal inflammation.  相似文献   

16.
Dendritic cells (DCs) harbor an active mitochondrion-dependent cell death pathway regulated by Bcl-2 family members and undergo rapid turnover in vivo. However, the functions for mitochondrion-dependent cell death of DCs in immune regulation remain to be elucidated. In this article, we show that DC-specific knockout of proapoptotic Bcl-2 family members, Bax and Bak, induced spontaneous T cell activation and autoimmunity in mice. In addition to a defect in spontaneous cell death, Bax(-/-)Bak(-/-) DCs were resistant to killing by CD4(+)Foxp3(+) T regulatory cells (Tregs) compared with wild-type DCs. Tregs inhibited the activation of T effector cells by wild-type, but not Bax(-/-)Bak(-/-), DCs. Bax(-/-)Bak(-/-) DCs showed increased propensity for inducing autoantibodies. Moreover, the autoimmune potential of Bax(-/-)Bak(-/-) DCs was resistant to suppression by Tregs. Our data suggested that Bax and Bak mediate intrinsic spontaneous cell death in DCs, as well as regulate DC killing triggered by Tregs. Bax- and Bak-dependent cell death mechanisms help to maintain DC homeostasis and contribute to the regulation of T cell activation and the suppression of autoimmunity.  相似文献   

17.
The dendritic cell (DC)-based tumor immunotherapy has been a new promise of cure for cancer patients, but animal studies and clinical trials have thus far only shown limited success, especially in treating established tumors. Certain immunosuppressive mechanisms triggered by tumor cells or the derivatives are believed to be a major obstacle. We studied the role of DC-derived IL-10 and its negative impact on vaccine efficacy in mouse models. Liver tumor cells were injected via the portal vein, giving rise to disseminated intrahepatic tumors, or s.c. to form solid but extrahepatic tumors. Bone marrow-derived DCs were generated from normal or IL-10-deficient mice and used as the vector to deliver tumor Ags. We demonstrate here that DCs devoid of IL-10, a potent immunosuppressive cytokine, are superior over conventional DCs in triggering antitumor immunity. The IL-10(-/-)DCs were highly immunogenic, expressed enhanced levels of surface MHC class II molecules, and secreted increased amounts of Th1-related cytokines. By inducing tumor-specific killing and through the establishment of immunological memory, the vaccines delivered by IL-10(-/-)DCs could evoke strong therapeutic and protective immunity against hepatocellular carcinoma in the mouse models. These findings will have great clinical impact once being translated into the treatment of malignant, and potentially infectious, diseases in humans.  相似文献   

18.
Dendritic cells (DCs) are potent antigen-presenting cells that are specialized in initiation of T-cell immunity. DCs induce promising anti-tumor T-cell and clinical responses, apparently without significant toxicity. Under certain conditions, DCs even silence T-cell immune responses in vivo. This dual capacity to modulate the immune system uniquely positions DCs for the treatment of autoimmunity, cancer and chronic viral infections.  相似文献   

19.
Zhou H  Perlman S 《Journal of virology》2006,80(5):2506-2514
Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8(+) and CD11b(+) splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号