首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

2.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   

3.
以中国科学院沈阳生态试验站的长期定位试验为平台,研究了不同施肥和土壤管理对潮棕壤微生物生物量碳、氮和群落结构的影响。结果表明,裸地和农田处理的微生物生物量碳、氮较低,但是农田处理下施肥增加了微生物生物量,其中NPK+M效果最明显。DGGE图谱显示,处理间细菌条带分布较相似,其中裸地的细菌多样性最高;长期施肥和土壤管理改变了土壤真菌群落结构,施肥增加了真菌多样性,且有机肥的影响大于化肥;不同处理间氨氧化细菌群落结构差异显著,NPK+M显著增加了氨氧化细菌多样性,且无机肥和有机肥对氨氧化细菌群落影响不同。施肥和土壤管理对细菌影响较小,但显著改变了真菌和氨氧化细菌的群落结构。聚类分析结果显示,土壤管理措施较施肥对细菌、真菌和氨氧化细菌群落的影响更为显著。  相似文献   

4.
The introduction of photosynthates through plant roots is a major source of carbon (C) for soil microbial biota and shapes the composition of fungal and bacterial communities in the rhizosphere. Although the importance of this process, especially to ectomycorrhizal fungi, has been known for some time, the extent to which plant belowground C allocation controls the composition of the wider soil community is not understood. A tree-girdling experiment enabled studies of the relationship between plant C allocation and microbial community composition. Girdling involves cutting the phloem of trees to prevent photosynthates from entering the soil. Four years after girdling, fungal and bacterial communities were characterized using DNA-based profiles and cloning and sequencing. Data showed that girdling significantly altered fungal and bacterial communities compared with the control. The ratio of ectomycorrhizal to saprobic fungal sequences significantly decreased in girdled treatments, and this decline was found to correlate with the fungal phospholipid fatty acid biomarker 18:2ω6,9. Bacterial communities also varied in the abundance of the two dominant phyla Acidobacteria and Alphaproteobacteria . Concomitant changes in fungal and bacterial communities suggest linkages between these two groups and point toward plant belowground C allocation as a key determinant of microbial community composition.  相似文献   

5.
Elevated CO2 generally increases plant productivity, and has been found to alter plant community composition in many ecosystems. Because soil microbes depend on plant-derived C and are often associated with specific plant species, elevated CO2 has the potential to alter structure and functioning of soil microbial communities. We investigated soil microbial community structure of a species-rich semi-natural calcareous grassland that had been exposed to elevated CO2 (600 μL L?1) for 6 growing seasons. We analysed microbial community structure using phospholipid fatty acid (PLFA) profiles and DNA fingerprints obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA fragments amplified by the Polymerase Chain Reaction (PCR). PLFA profiles were not affected by CO2 enrichment and the ratio of fungal and bacterial PLFA did not change. Ordination analysis of DNA fingerprints revealed a significant relation between CO2 enrichment and variation in DNA fingerprints in summer (P=0.01), but not in spring. This variation was due to changes in low-intensity bands, while dominant bands did not differ between CO2 treatments. Diversity of the bacterial community, as assessed by number of bands in DNA fingerprints and calculation of Shannon diversity indices, was not affected by elevated CO2. Overall, only minor effects on microbial community structure were detected, corroborating earlier findings that soil carbon inputs did probably change much less than suggested by plant photosynthetic responses.  相似文献   

6.
Arctic and Subarctic ecosystems will in the near future be exposed to severe environmental stresses due to global warming. For example, the microbial community structure and function may change as a result of increased temperatures. In Greenland, agriculture is carried out in the Subarctic regions with only limited pest management, despite the presence of plant pathogenic fungi. The microbial community composition in agricultural soils, which plays an important role for soil and plant health and for crop yield, may be affected by the use of different fertilizer treatments. Currently, only limited research has been performed on the effects of these treatments on bacterial communities in Arctic and Subarctic agricultural soils. The major objective of this study was to investigate the short-term impact of conventional (NPK) and organic (sheep manure supplemented with nitrogen) fertilizer treatments on bacterial diversity, nutrient composition and crop yield in two Greenlandic agricultural soils. An effect of fertilizer was found on soil and plant nutrient levels and on crop yields. Pyrosequencing of 16S rRNA gene sequences did not reveal any major changes in the overall bacterial community composition as a result of different fertilizer treatments, indicating a robust microbial community in these soils. In addition, differences in nutrient levels, crop yields and bacterial abundances were found between the two field sites and the two experimental growth seasons, which likely reflect differences in physical–chemical soil parameters.  相似文献   

7.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

8.
树种选择是林下山参护育成败的关键,研究树叶凋落物对人参土壤养分、微生物群落结构组成的影响,旨在为林下山参护育选择适宜林地及农田栽参土壤改良提供科学依据和理论指导。通过盆栽试验,研究添加5.0 g色木槭Acer mono.Maxim.var.mono(A)、赤松Pinus densiflora Sieb.et Zucc.(B)、胡桃楸Juglans mandshurica Maxim.(C)、紫椴Tilia amurensis Rupr.(D)、蒙古栎Quercus mongolica Fisch.ex Ledeb.(E)树叶凋落物到土壤中,种植人参(Panax ginseng C.A.meyer)后研究土壤理化性质以及微生物群落结构的变化。结果表明:添加不同树叶处理后人参土壤性质发生改变,土壤p H值显著高于对照土壤5.91(P0.05),土壤全氮、速效氮磷、微生物碳氮在所有树叶处理中显著增加(P0.05),而土壤容重、速效钾和C/N在添加树叶处理中降低。18个土壤样品基因组,经16S和ITS1测序分别得到6064和1900个OUTs。其中细菌涵盖了42门、117纲、170目、213科、225属,真菌涵盖了24门、98纲、196目、330科、435属。不同树叶处理人参土壤细菌和真菌地位发生改变,细菌Proteobacteria是树叶分解的关键微生物,添加树叶后其多样性显著高于对照(P0.05)。而细菌Bacteroidetes和真菌Basidiomycota可能是区别阔叶林和针叶林树种的关键微生物,针叶林中含量显著低于阔叶林(P0.05),而真菌Ascomycota是针叶林分解的关键微生物。进一步从不同分类水平上得到特定树叶凋落物的特异细菌和真菌。典型相关分析(CDA)表明细菌Bacteroidetes、Chloroflexi、Actinobacteria及真菌Basidiomycota、Zygomycota、Chytridiomycota及Ascomycota的位置及多样性的改变均与土壤因子SMBN、TN、AP、SOC、AK、C/N、p H有关。综上所述,添加不同树叶后不仅提高土壤微生物量碳氮、改善土壤理化性质,同时改变微生物群落结构组成,不同树叶处理土壤理化性质不同导致人参土壤微生物组成的差异,本结果对于林下参选地和农田栽参土壤微生物改良具有理论指导作用。  相似文献   

9.
We used microbial lipid analysis to analyze microbial biomass and community structure during 6 years of experimental treatment at the Jasper Ridge Global Change Experiment (JRGCE), a long‐term multi‐factor global change experiment in a California annual grassland. The microbial community fingerprint and specific biomarkers varied substantially from year to year, in both control and experimental treatment plots. Possible drivers of the variability included plant growth, soil moisture, and ambient temperature. Surprisingly, background variation in the microbial community was of a larger magnitude than even very significant treatment effects, and this variation appeared to constrain responses to treatment. Microbial communities were mostly not responsive or not consistently responsive to the experimental treatments. Both arbuscular mycorrhizal fungi biomarker abundance (16 : 1 ω5c) and the fungal to bacterial ratio were lower under nitrogen addition in most years. Bacterial lipid biomarker abundances (15 : 0 iso and 16 : 1 ω7c) were higher under nitrogen addition in 2002, the year of largest microbial biomass, suggesting that bacteria could respond more to nitrogen addition in years of better growth conditions. Nitrogen addition and warming led to an interactive effect on the Gram‐positive bacterial biomarker and the fungal to bacterial ratio. These patterns indicate that in California grassland ecosystems, microbial communities may not respond substantially to future changes in climate and that nitrogen deposition may be a determinant of the soil response to global change. Further, year‐to‐year variation in microbial growth or community composition may be important determinants of ecosystem response to global change.  相似文献   

10.
A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the structure and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, −50%, or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath piñon pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynamics, background climatic variability, and the composition of the associated aboveground community.  相似文献   

12.
Little information exists on the responses of soil fungal and bacterial communities in high elevation coniferous forest/open meadow ecosystems of the northwest United States of America to treatments that impact vegetation and soil conditions. An experiment was conducted in which soil cores were reciprocally transplanted between immediately adjacent forests and meadows at two high elevation (∼1,600 m) sites (Carpenter and Lookout) in the H.J. Andrews Experimental Forest located in the Cascade Mountains of Oregon. Half of the cores were placed in PVC pipe (closed) to prevent new root colonization, whereas the other cores were placed in mesh bags (open) to allow recolonization by fine roots. A duplicate set of open and closed soil cores was not transferred between sites and was incubated in place. After 2 year, soil cores were removed and changes in fungal and bacterial biomasses determined using light microscopy, and changes in microbial community composition determined by PLFA analysis, and by length heterogeneity PCR of the internal transcribed spacer region of fungal ribosomal DNA. At both sites soil microbial community structures had responded to treatments after 2 year of incubation. At Carpenter, both fungal and bacterial community structures of forest soil changed significantly in response to transfer from forest to meadow, with the shift in fungal community structure being accompanied by a significant decrease in the PLFA biomarker of fungal biomass,18:2ω6,9. At Lookout, both fungal and bacterial community structures of forest soil changed significantly in response to open versus closed core treatments, with the shift in the fungal community being accompanied by a significant decrease in the 18:2ω6,9 content of closed cores, and the shift in the bacterial community structure being accompanied by a significant increase in bacterial biomass of closed cores. At both sites, fungal community structures of meadow soils changed differently between open and closed cores in response to transfer to forest, and were accompanied by increases in the18:2ω6,9 content of open cores. Although there were no significant treatment effects on the bacterial community structure of meadow soil at either site, bacterial biomass was significantly higher in closed versus open cores regardless of transfer.  相似文献   

13.
Numerous experiments have been established to examine the effect of plant diversity on the soil microbial community. However, the relationship between plant diversity and microbial functional diversity along broad spatial gradients at a large scale is still unexplored. In this paper, we examined the relationship of plant species diversity with soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Preliminary detrended correspondence analysis (DCA) indicated that plant composition showed a significant separation along the axis 1, and axis 1 explained the main portion of variability in the data set. Moreover, DCA-axis 1 was significantly correlated with soil microbial biomass C (r = 0.735, P = 0.001), microbial catabolic activity (average well color development; r = 0.775, P < 0.001) and microbial functional diversity (catabolic diversity: r = 0.791, P < 0.001 and catabolic richness: r = 0.812, P < 0.001), which suggested thatsome relationship existed between plant composition and the soil microbial community along the spatial gradient at a large scale. Soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness showed a significant, linear increase with greater plant species richness. However, many responses that we observed could be explained by greater aboveground plant biomass associated with higher levels of plant diversity, which suggested that plant diversity impacted the soil microbial community mainly through increases in plant production.  相似文献   

14.
Changes in soil microbial community structure due to improvement are often attributed to concurrent shifts in floristic community composition. The bacterial and fungal communities of unimproved and semi-improved (as determined by floristic classification) grassland soils were studied at five upland sites on similar geological substrata using both broad-scale (microbial activity and fungal biomass) and molecular [terminal restriction fragment length polymorphism (TRFLP), automated ribosomal intergenic spacer analysis (ARISA)] approaches. It was hypothesized that microbial community structure would be similar in soils from the same grassland type, and that grassland vegetation classifications could thus be used as predictors of microbial community structure. Microbial community measurements varied widely according to both site and grassland type, and trends in the effect of grassland improvement differed between sites. These results were consistent with those from similar studies, and indicated that floristic community composition was not a stable predictor of microbial community structure across sites. This may indicate a lack of correlation between grassland plant composition and soil microbial community structure, or that differences in soil chemistry between sites had larger impacts on soil microbial populations than plant-related effects.  相似文献   

15.
16.
研究氮沉降和降雨变化对土壤真菌群落结构的互作效应,对未来预测多个气候变化因子对草地生态系统的交互作用具有重要意义。以施氮和灌溉模拟氮沉降和降雨增加,采用裂区设计,应用高通量测序技术,研究8个氮添加水平(0、15、30、50、100、150、200、300 kg N hm~(-2)a~(-1))和2个水分添加水平(不灌溉、模拟夏季增雨100 mm灌溉)对土壤真菌群落结构的影响。结果表明,氮素和水分添加后,土壤真菌群落中占优势的门类分别为接合菌门Zygomycota(22.0%—48.9%)、担子菌门Basidiomycota(7.8%—18.5%)、子囊菌门Ascomycota(9.4%—20.1%)、球囊菌门Glomeromycota(0.7%—3.1%)、壶菌门Chytridiomycota(0.1%—1.3%)。常规降雨条件下,随着氮添加水平升高,接合菌门相对丰度呈现出先升高后降低的趋势,N50处理最高;子囊菌门相对丰度在高氮添加时(N100—N300)呈升高趋势。而在氮素和水分同时添加条件下,随着氮添加水平升高,接合菌门相对丰度呈降低趋势,子囊菌门相对丰度变化则不明显。在相同的氮添加水平下,水分添加使接合菌门相对丰度增加,而担子菌门、子囊菌门、球囊菌门和壶菌门的相对丰度降低。在不同氮素和水分添加条件下,有5个土壤真菌门类11个真菌纲相对丰度变化显著。接合菌门的Mortierella属,担子菌门的Entolomataceae科和Geastrum属相对丰度变化极显著,可作为土壤真菌群落结构变化的指示种。PCo A分析结果也表明氮素和水分添加改变了土壤真菌群落结构。植物-土壤-微生物系统的结构方程模型结果表明,植物群落组成及植物物种丰富度的变化是土壤真菌群落结构发生变化的主要影响因素,土壤无机氮及p H的变化主要通过影响植物群落间接影响真菌群落,其对真菌群落的直接影响则较小。综上,氮素和水分添加改变了土壤真菌群落结构,且两者存在明显的互作效应,水分添加可改变氮添加对土壤真菌群落的影响。  相似文献   

17.
《Global Change Biology》2018,24(6):2721-2734
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant–microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root–microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long‐term (>25 years), whole‐watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.  相似文献   

18.
开展川西亚高山相似土壤母质背景下天然次生林土壤微生物群落结构及其多样性探究,可加深次生林更新过程中土壤微生物群落结构变化的认知。选取川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的3种天然次生林(槭-桦阔叶林,ABB;桦-槭-冷杉针阔混交林,BAA;岷江冷杉林,AFF),分析林下表层(0-20 cm)土壤微生物群落结构变化及其影响因素,结果显示:(1)3种林型土壤细菌Chao1和Shannon指数均极显著高于真菌,但仅真菌群落的Shannon指数差异显著,表现为BAA > ABB > AFF;(2)细菌群落优势门主要为变形杆菌门、酸杆菌门、疣微菌门、拟杆菌门、绿弯菌门,相对丰度占比超过82%;真菌群落则为子囊菌门和担子菌门,占比超过85%,AFF担子菌门相对丰度最高而子囊菌门最低。(3) RDA分析显示,土壤pH和乔木物种多样性(Shannon指数)是影响微生物群落结构变化的主导因子;土壤养分元素对细菌群落影响不显著,真菌群落主要受TN、TP含量显著影响。总体上,林型间乔木层物种多样性、土壤酸碱度及其氮磷含量是导致微生物群落结构变化的关键因素。  相似文献   

19.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

20.
Rhizosphere microbial community is important for the acquisition of soil nutrients and closely related to plant species. Fertilisation practice changed soil quality. With the hypothesis of stronger rhizosphere effect of plant on rhizosphere microbial community than fertilisation management, we designed this research based on a long‐term field experiment (1982–present). This study consists of no fertilisation (NF), mineral fertilisers (NPK), mineral fertilisers plus 7,500 kg/ha of wheat straw addition (WS) and mineral fertilisers plus 30,000 kg/ha of cow manure (CM). After analysing, we found that fertilisation management not only elevated crop yield but also affected crop rhizosphere microbial community structure. The influence of fertilisation practice on wheat rhizosphere microbial structure was stronger than that of wheat. For wheat rhizosphere bacterial community, it was significantly affected by soil water content (SWC), nitrogen (TN), phosphorus (TP), pH, available phosphorus (AVP) and nitrogen (AVN), dissolved organic nitrogen (DON) and carbon (DOC). Besides SWC, pH, AVP, AVN, TN, TP and DOC, the wheat rhizosphere fungi community was also significantly affected by soil organic matter (SOM) and available potassium (AVK). Moreover, compared to rhizosphere bacterial community, the influences of soil physiochemical properties on rhizosphere fungal community was stronger. In conclusion, fertilisation practice was the primary factor structuring rhizosphere microbial community by changing soil nutrients availabilities in the agroecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号