首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A protease was isolated from potato ( Solanum tuberosum L. cv. Huinkul) tuber disks after 24 h of aeration when proteolysis is markedly increased. Purification was performed by ammonium sulfate precipitation, ion exchange chromatography, and affinity chromatography. A size of 40 kDa was estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration, it is monomeric and its properties are consistent with those of aspartic proteinases (EC 3.4.23): it had a pH optimum between 4 and 5 and it was inhibited by pepstatin. Partial homology with other plant aspartic proteinases was observed in two sequenced tryptic fragments. It binds to Sepharose-concanavalin A and can be eluted with α -methyl mannoside, indicating that it is possibly glycosylated. Unlike other aspartic proteinases from Solanaceae that degrade pathogenesis-related proteins, it is unable to cleave a basic chitinase from potato. Moreover, this aspartic protease is strongly inhibited by the basic chitinase; the 50% inhibition is obtained when the molar ratio approaches 1, the same as with pepstatin. The interaction between this aspartic protease and a new type of endogenous inhibitor may be an interesting starting point to study the regulation of these aspartic proteases during stress.  相似文献   

2.
Proteolytic activity in the maize pollen wall   总被引:2,自引:0,他引:2  
A new protease from maize ( Zea mays L.) pollen is described. It was purified using gel filtration, ion exchange and high performance liquid chromatography. SDS-PAGE and HPLC showed that the enzyme has a dimeric structure of M, ca 60,000. Inhibitor investigations indicated an aspartic acid residue in its active site. The optimum pH for maize pollen aspartic proteinase activity was 5.6, and the optimum temperature was 45°C. The enzyme is easily eluted from the pollen grains and, as confirmed by enzymoblotting after isoelectric focusing, it is located in the pollen wall. Similar to metallo-proteinases, its activity is inhibited by Zn2+. The pL value for purified aspartic proteinase, as estimated after IEF, was 5.0. Two-dimensional electrophoresis analysis of proteins eluted from maize pistils suggests that the enzyme digests the proteins and may be involved in pollen-tube germination. The properties of serine and aspartic proteinases from maize pollen are compared.  相似文献   

3.
4.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. The production of hydrolytic enzymes appears to be a key element in the parasitic process. Among the enzymes released by Trichoderma, the aspartic proteases play a major role. A gene (SA76) encoding an aspartic protease was cloned by 3' rapid amplification of cDNA ends from T. harzianum T88. The coding region of the gene is 1,593 bp long, encoding a polypeptide of 530 amino acids with a predicted molecular mass 55 kDa and a pI of 4.5. The catalytic aspartic residues characteristic of aspartic proteases are conserved with an active-site motif (DSG); however, the DSG in the N-terminal lobe is unusual in that Ser replaced Thr. Northern blot analysis indicated that SA76 was induced in response to different fungal cell walls. Aspartic protease SA76 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (10.5 U mL(-1)) 72 h after induction with galactose. The temperature optimum of the enzyme was 45 degrees C and its pH optimum was 3.5. The culture supernatant of the S. cerevisiae strain that expressed the aspartic protease SA76 was able to inhibit the growth of five phytopathogenic fungi. The inhibition of mycelial growth varied between 7% and 38%.  相似文献   

5.
Aspergillus fumigatus is an opportunistic fungal pathogen that infects immunocompromised patients. A putative aspartic protease gene (ctsD; 1425 bp; intron-free) was identified and cloned. CtsD is evolutionarily distinct from all previously identified A. fumigatus aspartic proteases. Recombinant CtsD was expressed in inclusion bodies in Escherichia coli (0.2mg/g cells) and subjected to extensive proteolysis in the baculovirus expression system. Activation studies performed on purified, refolded, recombinant CtsD resulted in protease activation with a pH(opt)4.0 and specific activity=10 U/mg. Pepstatin A also inhibited recombinant CtsD activity by up to 72% thereby confirming classification as an aspartic protease. Native CtsD was also immunologically identified in culture supernatants and purified from fungal cultures using pepstatin-agarose affinity chromatography (7.8 microg CtsD/g mycelia). In A. fumigatus, semi-quantitative RT-PCR analysis revealed expression of ctsD in minimal and proteinaceous media only. Expression of ctsD was absent under nutrient-rich conditions. Expression of ctsD was also detected, in vivo, in the Galleria mellonella virulence model following A. fumigatus infection.  相似文献   

6.
To better exploit the biocontrol potential of nematophagous fungi, it is important to fully understand the molecular background of the infection process. In this paper, several nematode-trapping fungi were surveyed for nematocidal activity. From the culture filtrate of Monacrosporium microscaphoides, a neutral serine protease (designated Mlx) was purified by chromatography. This protease could immobilize the nematode Penagrellus redivivus in vitro and degrade its purified cuticle, suggesting that Mlx could serve as a virulence factor during infection. Characterization of the purified protease revealed a molecular mass of approximately 39 kDa, an isoelectric point of 6.8, and optimum activity at pH 9 at 65 degrees C. Mlx has broad substrate specificity, and it hydrolyzes protein substrates, including casein, skimmed milk, collagen, and bovine serum albumin. The gene encoding Mlx was also cloned and the nucleotide sequence was determined. The deduced amino acid sequence contained the conserved catalytic triad of aspartic acid--histidine--serine and showed high similarity with two cuticle-degrading proteases (PII and Aoz1), which were purified from the nematode-trapping fungus Arthrobotrys oligospora. Research on infection mechanisms of nematode-trapping fungi has thus far only focused on A. oligospora. However, little is known about other nematode-trapping fungi. Our report is among the first to describe the purification and cloning of an infectious protease from a different nematode-trapping fungus.  相似文献   

7.
Cathepsin E is an intracellular, non-lysosomal aspartic protease expressed in a variety of cells and tissues. The protease has proposed physiological roles in antigen presentation by the MHC class II system, in the biogenesis of the vasoconstrictor peptide endothelin, and in neurodegeneration associated with brain ischemia and aging. Cathepsin E is the only A1 aspartic protease that exists as a homodimer with a disulfide bridge linking the two monomers. Like many other aspartic proteases, it is synthesized as a zymogen which is catalytically inactive towards its natural substrates at neutral pH and which auto-activates in an acidic environment. Here we report the crystal structure of an activation intermediate of human cathepsin E at 2.35A resolution. The overall structure follows the general fold of aspartic proteases of the A1 family, and the intermediate shares many features with the intermediate 2 on the proposed activation pathway of aspartic proteases like pepsin C and cathepsin D. The pro-sequence is cleaved from the protease and remains stably associated with the mature enzyme by forming the outermost sixth strand of the interdomain beta-sheet. However, different from these other aspartic proteases the pro-sequence of cathepsin E remains intact after cleavage from the mature enzyme. In addition, the active site of cathepsin E in the crystal is occupied by N-terminal amino acid residues of the mature protease in the non-primed binding site and by an artificial N-terminal extension of the pro-sequence from a neighboring molecule in the primed site. The crystal structure of the cathepsin E/pro-sequence complex, therefore, provides further insight into the activation mechanism of aspartic proteases.  相似文献   

8.
Aspartic proteases are the focus of recent research interest in understanding the physiological importance of this class of enzymes in plants. This is the first report of an aspartic protease from the seeds of Vigna radiata. The aspartic protease was purified to homogeneity by fractional ammonium sulfate precipitation and pepstatin-A agarose affinity column. It was found to have a molecular weight of 67,406 Da by gel filtration chromatography. SDS-PAGE analysis revealed the presence of a heterodimer with subunits of molecular weights of 44,024 and 23,349 Da respectively. The enzyme was pH stable with the amino acid analysis confirming the molecular weight of the protein. The substrate cleavage site as analyzed by using the synthetic substrate was found to be the Phe-Tyr bond. The kinetic interactions of the enzyme were studied with the universal inhibitor, pepstatin A. This is the first report on the interactions of a plant aspartic protease with pepstatin-A, an inhibitor from a microbial source. A competitive one-step mechanism of binding is observed. The progress curves are time-dependent and consistent with tight binding inhibition. The K(i) value of the reversible complex of pepstatin with the enzyme was 0.87 microM whereas the overall inhibition constant K(i)* was 0.727 microM.  相似文献   

9.
Kawano M  Kuwabara T 《FEBS letters》2000,481(2):101-104
The redox enzyme violaxanthin de-epoxidase (VDE) was found to be sensitive to pepstatin, a specific inhibitor of aspartic protease. The inhibition was similar to that of aspartic protease in that it was reversible and accompanied by the protonation of the enzyme. Of the two peaks of VDE appearing on anion exchange chromatography, VDE-I predominated at pH 7.2. On lowering the pH of the chromatography, VDE-I decreased and VDE-II increased. Furthermore, re-chromatography of either peak yielded both peaks. These results suggest that VDE-I and VDE-II are interconvertible depending on pH, and thus, they represent the de-protonated and protonated forms of the enzyme, respectively. Presumably the protonation-induced structural change of the enzyme is responsible for the interaction with pepstatin, and also with substrate.  相似文献   

10.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

11.
The primary structure of the so-called histoaspartic protease from Plasmodium falciparum has a very high percentage of identity and homology with the pepsin-like enzyme plasmepsin II. A homology modeling approach was used to calculate the three-dimensional structure of the enzyme. Molecular dynamics (MD) simulations were applied to find those structural properties of the histoaspartic protease that had a tendency to remain stable during all runs. The results have shown that hydrogen-bonded residues Ser37-His34-Asp214 are arranged without any strain, in a manner that resembles the active site of a serine protease, while Ser38 and Asn39 take up positions appropriate to formation of an oxyanion hole. Although there are several important differences between the enzyme and plasmepsin II, all of the structural features associated with a typical pepsin-like aspartic protease are present in the final model of the histoaspartic protease. A possibility that this enzyme may function as a serine protease is discussed.  相似文献   

12.
Violaxanthin de-epoxidase (VDE) was purified from thylakoid membranes of spinach by conventional column chromatography in the presence of Tween 20. The neutral detergent was necessary to prevent non-specific interaction of VDE with column resins. In anion-exchange chromatography on Mono Q, VDE appeared in two peaks. Both peaks exhibited a polypeptide of 41 kDa when fully reduced with 5 mM dithiothreitol. Re-chromatography of either peak gave rise to both peaks, suggesting that the two forms of VDE are interconvertible. VDE characteristically changed its electrophoretic mobility depending on the concentration of dithiothreitol with which the protein was treated. When non-reduced, it showed two polypeptides of 43 and 42 kDa. These polypeptides moved down to the position of 40 kDa, and then up to the position of 41 kDa, along with the increase in the dithiothreitol concentration from 0 to 2 mM. These findings suggest that VDE has more than one disulfide bond and takes multiple forms depending on the extent of the reduction. Studies with various types of protein-modifying reagent revealed that VDE is sensitive to pepstatin A, a specific inhibitor of aspartic protease. This finding suggests that the reaction center of VDE contains a reactive aspartic acid residue(s).  相似文献   

13.
A glutamic acid-specific protease has been purified to homogeneity from Bacillus licheniformis ATCC 14580 utilizing Phe-Leu-D-Glu-OMe-Sepharose affinity chromatography and crystallized. The molecular weight of the protease was estimated to be approximately 25,000 by SDS-polyacrylamide gel electrophoresis. This protease, which we propose to call BLase (glutamic acid-specific protease from B. licheniformis ATCC 14580), was characterized enzymatically. Using human parathyroid hormone (13-34) and p-nitroanilides of peptidyl glutamic acid and aspartic acid, we found a marked difference between BLase and V8 protease, EC 3.4.21.9, although both proteases showed higher reactivity for glutamyl bonds than for aspartyl bonds. Diisopropyl fluorophosphate and benzyloxycarbonyl Leu-Glu chloromethyl ketone completely inhibited BLase, whereas EDTA reversibly inactivated the enzyme. The findings clearly indicate that BLase can be classified as a serine protease. To elucidate the complete primary structure and precursor of BLase, its gene was cloned from the genomic DNA of B. licheniformis ATCC 14580, and the nucleotide sequence was determined. Taking the amino-terminal amino acid sequence of the purified BLase into consideration, the clones encode a mature peptide of 222 amino acids, which follows a prepropeptide of 94 residues. The recombinant BLase was expressed in Bacillus subtilis and purified to homogeneity. Its key physical and chemical characteristics were the same as those of the wild-type enzyme. BLase was confirmed to be a protease specific for glutamic acid, and the primary structure deduced from the cDNA sequence was found to be identical with that of a glutamic acid-specific endopeptidase isolated from Alcalase (Svendsen, I., and Breddam, K. (1992) Eur. J. Biochem. 204, 165-171), being different from V8 protease and the Glu-specific protease of Streptomyces griseus which consist of 268 and 188 amino acids, respectively.  相似文献   

14.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS-PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K(m) of 0.85 μM. The k(cat) and k(cat)/K(m) values were 13 s(-1) and 15 s(-1) μM(-1) respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K(i), of 25 pM.  相似文献   

15.
We have studied the primary structure of human cystatin As from epidermis, liver, spleen, and leukocytes. These molecules were indistinguishable on PAGE in the presence and absence of SDS, by fast protein liquid chromatography (FPLC) chromatofocusing on a Mono P column, and in amino acid composition. The NH2- and COOH-terminal amino acid sequences of human cystatin As from epidermis, liver, and spleen were identical with those of human leukocyte cystatin A previously reported except for the lack of the NH2-terminal methionine residue in human epidermal cystatin A. The peptides obtained upon digestion of four human cystatin As with Achromobacter protease I (AP) showed identical peptide maps on HPLC except for different retention times of the NH2-terminal peptides. Furthermore, the amino acid compositions of corresponding separated peptide quartets were identical. We also determined the complete amino acid sequence of human epidermal cystatin A by sequencing peptides obtained from AP digestion and cyanogen bromide (CNBr) cleavage. It consisted of 97 amino acid residues, and was identical with those of human cystatin As from liver, spleen, and leukocytes except for the lack of the NH2-terminal methionine residue.  相似文献   

16.
本文通过采用可控酶解的方式酶解大豆蛋白获得了一种源自大豆的天冬氨酸蛋白酶抑制剂SAPI( soy aspartic proteinase inhibitor).酶解液经过DEAE-52阴离子交换层析、Superdex Peptide 10/300 GL凝胶层析、SOURCE 15RPC反相层析分离后最终比抑制活力为254.2 IU/mg,纯化倍数为62.SAPI对胃蛋白酶(3000U)半数抑制浓度IC50为25.67 μg/mL,有良好的热稳定性,属于一种非竞争性抑制剂.  相似文献   

17.
Endonuclease activity which specifically cleaves baseless (apurinic/apyrimidinic (AP] sites in supercoiled DNA has been purified from mitochondria of the mouse plasmacytoma cell line, MPC-11. Two variant forms separate upon purification; these have small but reproducible differences in catalytic and chromatographic properties, but similar physical properties. Both have a sedimentation coefficient of 4.0, corresponding to a molecular weight of 61,000 (assuming a globular configuration) and a peptide molecular weight of about 65,000 as determined by immunoblot analysis with antiserum raised against the major AP endonuclease from HeLa cells. Thus mitochondrial AP endonuclease appears to be a monomer of about 65 kDa, making it distinguishable from the major AP endonuclease of MPC-11 cells which, like those of other mammalian cells, appears to be a monomer of about 41 kDa. A possible 82-kDa precursor form was also detected by immunoblot analysis of a crude mitochondrial fraction. Mitochondrial AP endonuclease activity is greatly stimulated by divalent cations, has a pH optimum between 6.5 and 8.5, and cleaves the AP site by a class II mechanism to generate a 3'-OH nucleotide residue. These properties resemble those of the major mammalian AP endonucleases but, unlike those enzymes, mitochondrial AP endonuclease activity is neither inhibited by adenine or NAD+ nor stimulated by Triton X-100. Since the mitochondrial activity generates active primer termini for DNA synthesis, it could function in base excision DNA repair; alternatively, it might have a role in eliminating damaged mitochondrial genomes from the gene pool.  相似文献   

18.
Li J  Chi Z  Wang X 《Microbiological research》2010,165(3):173-182
The SAP6 gene (without signal sequence) encoding Metschnikowia reukaufii acid protease was amplified by PCR and fused to the expression vector pET-24a(+). The carboxy-terminal 6x His-tagged recombinant acid protease (rSAP6) was expressed from pET-24a(+)SAP6-6His in Escherichia coli BL21 (DE3) and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified rSAP6 was 54kDa. The optimal temperature and pH of the purified rSAP6 were 40 degrees C and 3.4, respectively. The enzyme was stable below 45 degrees C and between pH 2.6 and 5.0. The results show that Mn(2+) had an activating effect on the enzyme, while Cu(2+), Mg(2+), Zn(2+) and Ag(+) acted as inhibitors of the enzyme. However, Ca(2+) had no effect on the enzyme activity. The purified rSAP6 was characterized as an aspartic protease as it was inhibited by aspartic protease-specific inhibitors, such as pepstatin. It was also found that the purified rSAP6 had milk-clotting activity.  相似文献   

19.
20.
Trichoderma mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. We have analysed the extracellular proteome secreted by T. harzianum CECT 2413 in the presence of different fungal cell walls. Significant differences were detected in 2DE maps, depending on the use of specific cell walls or chitin. A combination of MALDI-TOF and liquid chromatography mass spectrometry allowed the identification of a novel aspartic protease (P6281: MW 33 and pI 4.3) highly induced by fungal cell walls. A broad EST library from T. harzianum CECT 2413 was used to obtain the full-length sequence. The protein showed 44% identity with the polyporopepsin (EC 3.4.23.29) from the basidiomycete Irpex lacteus. Lower identity percentages were found with other pepsin-like proteases from filamentous fungi (<31%) and animals (<29%). Northern blot and promoter sequence analyses support the implication of the protease P6281 in mycoparasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号