首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.  相似文献   

2.
Metalloendoproteases have been implicated in a variety of fusion processes including plasma membrane fusion and exocytosis. As a prerequisite to skeleton formation in the sea urchin embryo, primary mesenchyme cells undergo fusion via filopodia to form syncytia. The spicule is formed within the syncytial cable by matrix and mineral deposition. To investigate the potential involvement of a metalloendoprotease in spiculogenesis, the effect of inhibitors of this enzyme on skeleton formation was studied. Experiments with primary mesenchyme cells in vitro and in normal embryos revealed that skeleton formation was blocked by these inhibitors. These findings implicate a metalloendoprotease in spiculogenesis; such an enzyme has been demonstrated in homogenates of primary mesenchyme cells. The most likely site of action of the metalloendoprotease is at the cell membrane fusion stage and/or at subsequent events requiring membrane fusion.  相似文献   

3.
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.  相似文献   

4.
Studies of the sea urchin larval skeleton have contributed greatly to our understanding of the process of biomineralization. In this study we have undertaken an investigation of the morphology of skeleton formation and the localization of proteins involved in the process of spicule formation at the electron microscope level. Sea urchin primary mesenchyme cells undergo a number of morphological changes as they synthesize the larval skeleton. They form a large spicule compartment that surrounds the growing spicule and, as spicule formation comes to an end, the density of the cytoplasm decreases. Inhibition of spicule formation by specific matrix metalloproteinase inhibitors or serum deprivation has some subtle effects on the morphology of cells and causes the accumulation of specific classes of vesicles. We have localized proteins of the organic matrix of the spicule and found that one protein, SM30, is localized to the Golgi apparatus and transport vesicles in the cytoplasm as well as throughout the occluded protein matrix of the spicule itself. This localization suggests that SM30 is an important structural protein in the spicule. Another spicule matrix protein, SM50, has a similar cytoplasmic localization, but in the spicule much of it is localized at the periphery of the spicule compartment, and consequently it may play a role in the assembly of new material onto the growing spicule or in the maintenance of the integrity of the matrix surrounding the spicule.  相似文献   

5.
We studied the effect of fibronectin (FN) on the behavior of primary mesenchyme cells isolated from sea urchin mesenchyme blastulae in vitro using a time-lapse technique. The migration of isolated primary mesenchyme cells reconstituted in seawater and horse serum is dependent on the presence or absence of exogenous FN in the culture media. The cells in FN, 4 and 40 micrograms/ml, show a high percentage of migration and migrate long distances, whereas a higher concentration of FN at 400 micrograms/ml tends to inhibit migration.  相似文献   

6.
Time-lapse videomicroscopy of cultured primary mesenchyme cells from mesenchyme blastulae of the sea urchin Lytechinus pictus demonstrates the dramatic ability of these cells to undergo cell fusion and cell separation. Although this plasticity of cell associations is presumed to play a role in the formation of the syncytial cables that secrete the larval skeleton, the surfaces of these cells must be specialized for fusion and cell separation.  相似文献   

7.
In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm-extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape.  相似文献   

8.
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.  相似文献   

9.
An in vitro culture system for primary mesenchyme cells of the sea urchin embryo has been used to study the cellular characteristics of skeletal spicule formation. As judged initially by light microscopy, these cells attached to plastic substrata, migrated and fused to form syncytia in which mineral deposits accumulated in the cell bodies and in specialized filopodial templates. Subsequent examination by scanning electron microscopy revealed that the cell bodies and the filopodia and lamellipodia formed spatial associations similar to those seen in the embryo and indicated that the spicule was surrounded by a membrane-limited sheath derived by fusion of the filopodia. The spicules were dissolved from living or fixed cells by a chelator of divalent cations or by lowering the pH of the medium. However, granular deposits found in the cell bodies appeared relatively refractory to such treatments, indicating that they were inaccessible to agents that dissolved the spicules. Use of rapid freezing and an anhydrous fixative to preserve the syncytia for transmission electron microscopy and X-ray microprobe analysis, indicated that electron-dense deposits in the cell bodies contain elements (Ca, Mg and S) common to the spicule. Examination of the spicule cavity after dissolution of the spicule mineral revealed openings in the filopodia-derived sheath, coated pits within the limiting membrane and a residual matrix that stained with ruthenium red. Concanavalin A--gold applied exogenously entered the spicule cavity and bound to matrix glycoproteins. Based on these observations, we conclude that components of the spicule initially are sequestered intracellularly and that spicule elongation occurs in an extracellular cavity. Ca2+ and associated glycoconjugates may be routed in this cavity via a secretory pathway.  相似文献   

10.
The migration of sea urchin primary mesenchyme cells (PMC) is inhibited in embryos cultured in sulfate-free seawater and in seawater containing exogenous xylosides. In the present study, primary mesenchyme cells and extra-cellular matrix have been isolated from normal and treated Lytechinus pictus and Strongylocentrotus purpuratus embryos and recombined in an in vitro migration assay to determine whether the cells or the matrix are migration defective. Normal cells were found to migrate on either normal or treated matrix, whereas sulfate-deprived and xyloside-treated PMC failed to migrate in vitro on normal and treated substrata. Migratory ability can be restored to defective cells by returning the PMC to normal seawater, or by exposing the defective cells to materials removed from the surface of normal cells with 1 M urea. The similarity of the results obtained with sulfate-deprived and xyloside-treated PMC suggested that a common molecule may be affected by the two treatments. As a first test of this possibility, xyloside-treated S. purpuratus PMC were given the urea extract prepared from sulfate-deprived S. purpuratus PMC, and this extract did not restore migratory ability. These findings indicate that PMC normally synthesize a surface-associated molecule that is involved in cell migration, and the sensitivity to exogenous xylosides and sulfate deprivation suggests that a sulfated proteoglycan may be involved in primary mesenchyme cell migration.  相似文献   

11.
Primary mesenchyme cells used in this study were isolated from Lytechinus pictus mesenchyme blastulae by their ability to preferentially adhere to the surface of a tissue culture dish in the presence of serum. Once isolated, primary mesenchyme cells were found to form thin, elongated, active filopodia which closely resemble the filopodia seen in vivo. The filopodia formed in vitro can move as stiffened bristles, bend gradually or very sharply, or be slowly withdrawn. The integrity of the filopodia is not affected by nocodazole but is totally disrupted by cytochalasin D. Filopodia exhibit several apparent functions in vitro: as organelles involved in contacting the external environment, as anchoring appendages that hold the cell bodies in place, and as intercellular connectives that can join cell bodies. The filopodia of primary mesenchyme cells appear to have similar roles within the embryo. The function of the filopodia has been explored by watching the behavior of isolated primary mesenchyme cells in close proximity to deposits of extracellular material (ECM) prepared from mesenchyme blastulae. When the filopodium from a mesenchyme cell makes contact with the nearby ECM, a response is initiated which causes the cell body to move in a directed manner toward the ECM deposit. The use of this type of response as a model system for the study of the migration of primary mesenchyme cells within the embryo is considered.  相似文献   

12.
The mechanism of primary mesenchyme cell migration in the sea urchin, Lytechinus pictus, was studied in normal embryos and in sulfate-deprived embryos in which primary mesenchyme cells do not migrate. Based on scanning electron microscopy (SEM), cell processes were classified into six morphological types. Time-lapse cinematographic studies showed that two types of cell processes, a short finger-like process and a long process which accounted for 40 and 30% of the cell processes formed, respectively, in normal embryos, functioned as kinetic appendages during cell migration. Although the short finger-like process was formed to some extent in sulfate-deprived embryos, these processes were not able to attach to the ectodermal basal lamina, which is the migratory substratum. The long type of cell process was not observed at all in sulfate-deprived embryos. Transmission electron microscopy (TEM) demonstrated that cell processes in normal embryos were associated with 30 nm diameter granules in the basal lamina. Because these granules were absent in sulfate-deprived embryos, it is suggested that a specific component of the basal lamina substratum can be a limiting factor in cell migratory behavior.  相似文献   

13.
《Developmental biology》1986,114(2):336-346
Fluorescein isothiocyanate-conjugated wheat germ agglutinin (WGA-FITC) binds exclusively to the primary mesenchyme cells when the lectin is microinjected into the blastocoels of living Lytechinus pictus and Strongylocentrotus droebachiensis embryos. WGA-FITC binding increases throughout the period of primary mesenchyme cell migration and aggregation. Similar binding is observed in embryos cultured in sulfate-free seawater (SFSW) but not in seawater (ASW) containing tunicamycin. The temporal expression of WGA-FITC binding sites in vivo is also correlated with the pattern of binding observed in vitro. Sixteen-cell stage Arbacia punctulata embryos were dissociated in Ca2+ and Mg2+-free seawater (CMFSW) and the micromeres isolated using sucrose gradients. Arbacia micromeres, cultured in ASW containing calf serum, first bind WGA-FITC during the period when primary mesenchyme cell ingression occurs in control embryos. Micromeres cultured in the presence of tunicamycin do not develop WGA binding sites. The temporal expression of WGA-FITC binding in micromere cultures is unaffected by the absence of sulfate, but the size and morphology of aggregates cultured in SFSW differ from that of the controls.  相似文献   

14.
15.
16.
Epithelial-mesenchyme transitions (EMTs) are familiar to all scholars of development. Each animal system utilizes an EMT to produce mesenchyme cells. In vertebrates, for example, there are a number of EMTs that shape the embryo. Early, entry of epiblast cells into the primitive streak is followed by the emergence of mesoderm via an EMT process. The departure of neural crest cells from the margin of the neural folds is an EMT process, and the delamination of cells from the endomesoderm to form the supporting mesenchyme of the lung, liver, and pancreas are EMTs. EMTs are observed in Drosophila following invagination of the ventral furrow, and even in Cnidarians, which have only two germ layers, yet mesoglial and stem cells delaminate from the epithelia and occupy the matrix between the ectoderm and endoderm. This review will focus on a classic example of an EMT, which occurs in the sea urchin embryo. The primary mesenchyme cells (PMCs) ingress from the vegetal plate of this embryo precociously and in advance of archenteron invagination. Because ingression is precisely timed, the PMC lineage precisely known, and the embryo easily observed and manipulated, much has been learned about how the ingression of PMCs works in the sea urchin. Though the focus of this review is the sea urchin PMCs, there is evidence that all EMTs share many common features at both cellular and molecular levels, and many of these mechanisms are also shown to be involved in tumor progression, especially metastasizing carcinomas.  相似文献   

17.
18.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

19.
The relationship between 35SO4 incorporation into acid mucopolysaccharides and the appearance and activity of the primary mesenchyme cells has been studied in the sea urchin, Lytechinus pictus. The ratio of the uptake of 35SO4 to its incorporation into cetylpyridinium chloride precipitable material varies over a wide range during early development, with the smallest ratio, therefore the greatest sulfation activity, being found at the early mesenchyme blastula stage. The types of mucopolysaccharides produced have not been identified, but are heterogeneous. At the mesenchyme blastula stage nearly 90% of the polysaccharides produced become sulfated. When embryos develop in sulfate-free sea water to the mesenchyme blastula stage there is a 70% decrease in the incorporation of 3H-acetate into polysaccharides and a 13-fold decrease in the ratio of sulfated to nonsulfated polysaccharides produced. Embryos raised in sulfate-free sea water develop normally to the mesenchyme blastula stage at which time there is an accumulation in the blastocoel of primary mesenchyme cells that do not migrate. The surface of the primary mesenchyme cells of sulfate-deficient embryos has a smooth appearance in the scanning electron microscope, while the surface of these cells in control embryos is rough, possibly reflecting the presence of an extracellular coat. It is suggested that there is a correlation between sulfated polysaccharide synthesis, cell surface morphology and cell movement.  相似文献   

20.
The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号