首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strains of the anaerobic ciliate Trimyema compressum, isolated from different habitats, were compared. The cytoplasm of the ciliates contained hydrogenosome-like microbodies and methanogenic bacteria; the latter were lost during continued cultivation. In addition both strains harbored a non-methanogenic endosymbiont, which was lost in strain K. The ciliates lacked cytochromes, cytochrome oxidase and catalase but contained superoxide dismutase. Hydrogenase activity could be demonstrated only in strain N. In monoxenic culture strain K needed sterols as growth factors. The cells of both strains reacted similarly with respect to oxygen tolerance (up to 0.5 mg O2/l), inhibition of growth by cyanide and azide, and resistance to antimycin A. Only cells of strain N showed growth inhibition by chloramphenicol. It is concluded that Trimyema compressum is an anaerobic, microaerotolerant organism, its microbodies show more resemblance to hydrogenosomes than to mitochondria.  相似文献   

2.
Sapropelic ciliates from anoxic mud samples were enriched and cultivated in monoculture together with natural food bacteria growing on cellulose. The ciliates lacked cytochrome oxidase and contained bluish fluorescent endosymbionts. One of the anaerobic ciliates, Trimyema compressum, contained methanogenic bacteria as was shown by methane formation. During continued cultivation, T. compressum gradually lost its endosymbionts. With SEM microscopy no episymbiotic bacteria could be detected.From enrichment cultures of T. compressum, anaerobic bacteria were isolated in pure culture. One of the strains, a Bacteroides spec., proved capable of serving as food bacteria, thus allowing establishment of monoxenic T. compressum cultures. These cultures exhibited a requirement for sterols as growth factors. The doubling time of this ciliate was 13 h at 28°C. The highest yield obtained was 2100 cells/ml.Dedicated to Holger W. Jannasch on the occasion of his 60th birthday  相似文献   

3.
The anaerobic ciliate Trimyema compressum was cultivated on various food bacteria. Significant growth was observed when Lactobacillus sp., Escherichia coli, Enterobacter aerogenes, Desulfovibrio vulgaris, Methanoculleus bourgense, or Pelobacter propionicus cells were fed to the ciliates. The highest cell yield which we obtained was ca. 9,000 cells/ml when feeding D. vulgaris. However, no growth of the ciliates was observed on the culture with Clostridium novyi, Propionibacterium sp., Desulfobulbus propionicus, Methanobrevibacter arboriphilicus, Methanobacterium sp., Methanosarcina barkeri, or Methanothrix soehngenii cells. The ciliates produced acetate and methane as major end products in any cultures and small amounts of propionate, butyrate and hydrogen were also detected in some cultures. Physiological studies on the food bacteria which we tested indicated that the growth of T. compressum depended on the bacterial species, but there was no apparent correlation between the digestibility and the basic properties of those bacteria (i.e. size of the bacteria, gram-staining properties, susceptibility to the known lytic enzymes, Archaea or Bacteria).  相似文献   

4.
Monoxenic cultures of the anaerobic, endosymbiont-free ciliate Trimyema compressum were incubated with low numbers of Bacteroides sp. strain WoCb15 as food bacteria and two strains (DSM 3636 and 3637) of Methanobacterium formicicum, which originally had been isolated from the anaerobic protozoa Metopus striatus and Pelomyxapalustris. The ciliate which had lost its original endosymbiotic methanogens ingested both strains of M. formicicum. The methanogenic bacteria were found intact in large vacuoles in contrast to the food bacteria which were digested. Single methanogens were separated from the vacuoles and appeared surrounded by a membrane in the cytoplasm of the ciliate. After 2 months of incubation, the methanogenic bacteria still exhibited the typical bluish fluorescence and the new symbiotic association of M. formicicum and T. compressum excreted methane. Increasing the growth rate of the ciliates by large numbers of food bacteria resulted in a loss of the methanogenic bacteria, due to statistical outgrowth.  相似文献   

5.
The biochemical composition of two food bacteria was examined on which monoxenic cultures of Trimyema compressum grew with different yields. The food bacteria were the saccharolytic fermenting bacterium Bacteroides WoCb15 and the purple nonsulfur bacterium Rubrivivax gelatinosus. Differences in composition of bacterial biomass concerned mainly the carbohydrate content. By different culture conditions for R. gelationsus and pasteurization of carbohydrate-rich cells, we were able to feed the ciliate with food mixtures of different carbohydrate content. Dry mass yields of the ciliate reached a maximum with mixtures of 80% carbohydrate-rich pasteurized cells plus 20% carbohydratepoor living cells. In the absence of degradable carbohydrate, energy metabolism depended on protein as substrate. Utilization of protein was incomplete, large amounts were converted into soluble compounds that accumulated in the culture medium. The ciliate consumed storage carbohydrate of living or pasteurized food bacteria equally well, while growth with short generation times was still dependent on a certain percentage of living bacteria as source of native protein. Lipids, nucleic acids and denatured proteins were not degradable by the ciliate. Consequences for the fermentative metabolism of Trimyema compressum are discussed.  相似文献   

6.
Abstract The products of anaerobic and micro-aerobic (0.8% O2) metabolism of the sapropelic ciliate Trimyema compressum strain N were studied. Under anaerobic conditions ethanol was formed in large amounts representing 44% of the total carbon excreted. Acetate, lactate, formate, CO2 and H2 were minor products, while succinate was formed in hardly detectable amounts. Under micro-aerobic conditions O2 was consumed, CO2 and formate were produced as major end products and no H2, ethanol and succinate were formed.  相似文献   

7.
The sapropelic ciliate Plagiopyla nasuta was isolated and cultured in monoculture. Optimal conditions for growth were: 15–20°C, pH about 7, and about 2% of oxygen in the headspace. Cultures of P. nasuta produced methane. Epifluorescence microscopy revealed the presence of methanogenic bacteria as endosymbionts. An endosymbiont of the ciliate was isolated and identified as Methanobacterium formicicum. In the ciliate cell these methanogens were found to be closely associated with microbody-like organelles. No mitochondria could be detected.  相似文献   

8.
The Gram-positive methanogenic endosymbiont of the sapropelic ciliateMetopus striatus was isolated and identified asMethanobacterium formicicum. In the ciliate cell the methanogens are in close association with microbody-like organelles. No mitochondria could be detected. The nature of the microbodies and the physiological background of the observed association are discussed.  相似文献   

9.
Epifluorescence microscopy revealed the presence of a methanogenic bacterium as an endosymbiont in the sapropelic marine ciliate Metopus contortus. The in situ methanogenic activity of the symbiont could be demonstrated. The isolated endosymbiont was an irregular, disc-shaped bacterium with a diameter of 1.6–3.4 m. It had a generation time of 7 or 12 hours on growth on H2/CO2 or formate, respectively. The temperature range for growth was between 16 and 36°C with an optimum at 32°C. The optimal pH range for growth was 6.8 to 7.3. Salts, with an optimum concentration of 0.25 M, and tungsten were required for growth. The mol% G+C was 38.7%. The cell envelope consisted of proteins and a glycoprotein with an apparent molecular weight of 110,000. Morphology, antigenic relationship and the G+C content established the isolate MC1 as a new species of the genus Methanoplanus, and the name Methanoplanus endosymbiosus is proposed.Abbreviations G+C Guanine+cytosine - SDS sodium dodecylsulfate - PIPES piperazine-N,N-bis (2-ethane) sulfonic acid  相似文献   

10.
Ten strains of purple non-sulfur photosynthetic bacteria, isolated from wastewater produced by a concentrated latex processing factory, were cultivated in a wastewater medium without supplementation. After 40 h cultivation, one strain SS51, decreased the COD content of the wastewater by 34%. Optimal ratio of mixed-cultivation between SS51 and SY40 was 14:7 (ml/ml), and the COD content of the wastewater was decreased by 57%. Both strains were identified as Rubrivivax gelatinosus.  相似文献   

11.
Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar “RioGrande 76R” was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.  相似文献   

12.
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 αβ subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The α one was formylated at its N-terminal residue and the N-terminal methionine of β was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the α polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the α polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.  相似文献   

13.
Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO2 deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.  相似文献   

14.
Klebsiella aerogenes NCTC 418 was grown in chemostat culture under carbon limitation, with fructose, mannitol, gluconate or pyruvate as the growth-limiting substrates, respectively. It was found that under these conditions the carbon sources were fermented with maximal stoichiometry of ATP generation. The Y ATP values (g cells per mol ATP generated net) were similar for mannitol- and fructose-limited cultures, but gluconate-limited cultures expressed a value that was 20% lower. From these data it was concluded that gluconate-limited cells invest 0.5 ATP in the uptake of 1 gluconate.If the carbon limitation was instantaneously relieved by addition of a saturating amount of the growth-limiting substrate it was found that the response depended on the nature of the carbon substrate, and in particular on the ability to shift the fermentation pattern towards new products. In fructose- and gluconate-limited cultures the specific uptake rate of the carbon source increased substantially, without a concomitant increase in growth rate, and D-lactate appeared as a new fermentation product, in the case of gluconate accompanied by pyruvate. In contrast, with mannitol- and pyruvate-limited cultures the uptake rate of the carbon source and the fermentation pattern did not change. These results are discussed in connection with the functioning of the methylglyoxal by-pass and its role in sustaining metabolic reactivity.  相似文献   

15.
Species composition and distribution of large intestinal ciliates were investigated in the feces from 15 Turk rahvan horses, living in the vicinity of Izmir, Turkey. Twenty-two ciliate genera consisting of 36 species were identified. This is the first report on intestinal ciliates in Turk rahvan horses and no previously unknown species were observed. The mean number of ciliates was 14.2 ± 13.9 × 104 cells ml−1 of feces and the mean number of ciliate species per host was 9.9 ± 7.1. No ciliates were observed in 2 horses. Bundleia and Blepharocorys were considered to be the major genera since these ciliates were constantly found in high proportions. In contrast, Paraisotricha, Didesmis and Gassovskiella were only observed at low frequencies. The ciliates found in this survey had almost the same characteristics as those described in previous reports, suggesting that there was no significant geographic variation in the intestinal ciliate fauna of equids.  相似文献   

16.
Neocallimastix strain N1, an isolate from a ruminant (sheep), was cocultured with three Methanobacterium formicicum strains, Methanosarcina barkeri, and Methanobrevibacter smithii. The coculture with Methanobacterium formicicum strains resulted in the highest production of cellulolytic and xylanolytic enzymes. Subsequently four anaerobic fungi, two Neocallimastix strains (N1 and N2) from a ruminant and two Piromyces species from non-ruminants (E2 and R1), were grown in coculture with Methanobacterium formicicum DSM 3637 on filter paper cellulose and monitored over a 7-day period for substrate utilisation, fermentation products, and secretion of cellulolytic and xylanolytic enzymes. Methanogens caused a shift in fermentation products to more acetate and less ethanol, lactate and succinate. Furthermore the cellulose digestion rate increased by coculture. For cocultures of Neoallimastix strains with Methanobacterium formicicum strains the cellulolytic and xylanolytic enzyme production increased. Avicelase, CMCase and xylanase were almost completely secreted into the medium, while 40–60% of the -glucosidase was found to be cell bound. Coculture had no significant effect on the location of cellulolytic and xylanolytic enzymes.  相似文献   

17.
Rhodocyclus gelatinosus strain 1 (str. 1), a photoheterotrophic bacterium, used CO as an energy substrate under anaerobic CO/light conditions, and exhibited a diauxic growth response when CO was removed from the culture. Changes in the level of cyclic AMP which occurred in cells during diauxie suggested that the cyclic nucleotide operated as an intracellular control molecule. During CO/light-phase growth, intracellular cyclic AMP was 30 pmol/mg protein, and, as str. 1 adapted for photosynthetic growth after removal of CO, intracellular cyclic AMP levels decreased to 9 pmol/mg protein. Reexposure of a light culture to CO induced synthesis of CO oxidation activity (measured as CO:MV oxidoreductase). If 10 mM cyclic AMP was added with CO, the rate of synthesis of CO:MV oxidoreductase activity increased 25-fold, and str. 1 produced 1,230 units of activity (nmol CO oxidized min-1 mg-1 protein) after only 1 h. With cyclic AMP and no CO, no incerease in CO oxidation activity was seen. Appearance of CO oxidation activity in str. 1 represented de novo protein synthesis and was blocked with chloramphenicol. In addition to stimulating formation of CO oxidative activity, a high level of cyclic AMP in str. 1 during growth with CO appeared to influence photometabolism negatively by repressing bacteriochlorophyll formation.Abbreviations Bchl a bacteriochlorophyll a - MV methyl viologen - CO MV oxidoreductase, carbon monoxide: methyl viologen oxidoreductase  相似文献   

18.
During anaerobiosis in darkness the main route for ATP production in plants is through glycolysis in combination with fermentation. We compared the organ-specific anaerobic fermentation of flooding-tolerant rice (Oryza sativa) and sensitive wheat (Triticum aestivum) seedlings. A sensitive laser-based photoacoustic trace gas detection system was used to monitor emission of ethanol and acetaldehyde by roots and shoots of intact seedlings. Dark-incubated rice seedlings released 3 times more acetaldehyde and 14 times more ethanol than wheat seedlings during anaerobiosis. Ninety percent of acetaldehyde originated from shoots of both species. In comparison to wheat shoots, the high ethanol production of rice shoots correlated with larger amounts of soluble carbohydrates, and higher activities of fermentative enzymes. After 24 h of anaerobiosis in darkness rice shoots still contained 30% of aerated ATP level, which enabled seedlings to survive this period. In contrast, ATP content declined almost to zero in wheat shoots and roots, which were irreversibly damaged after a 24-h anaerobic period. When plants were anaerobically and dark incubated for 4 h and subsequently transferred back to aeration, shoots showed a transient peak of acetaldehyde release indicating prompt re-oxidation of ethanol. Post-anoxic acetaldehyde production was lower in rice seedlings than in wheat. This observation accounts for a more effective acetaldehyde detoxification system in rice. Compared to wheat the greater tolerance of rice seedlings to transient anaerobic periods is explained by a faster fermentation rate of their shoots allowing a sufficient ATP production and an efficient suppression of toxic acetaldehyde formation in the early re-aeration period.Angelika Mustroph and Elena I. Boamfa contributed equally to the paper.  相似文献   

19.
Kodama Y  Fujishima M 《Protoplasma》2005,225(3-4):191-203
Summary. Each symbiotic Chlorella sp. of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole, and thereby the alga is protected from digestion by lysosomal fusion. Algae-free cells can be reinfected with algae isolated from algae-bearing cells by ingestion into digestive vacuoles. To examine the timing of acidification and lysosomal fusion of the digestive vacuoles and of algal escape from the digestive vacuole, algae-free cells were mixed with isolated algae or yeast cells stained with pH indicator dyes at 25 ± 1 °C for 1.5 min, washed, chased, and fixed at various time points. Acidification of the vacuoles and digestion of Chlorella sp. began at 0.5 and 2 min after mixing, respectively. All single green Chlorella sp. that had been present in the host cytoplasm before 0.5 h after mixing were digested by 0.5 h. At 1 h after mixing, however, single green algae reappeared in the host cytoplasm, arising from those digestive vacuoles containing both nondigested and partially digested algae, and the percentage of such cells increased to about 40% at 3 h. At 48 h, the single green algae began to multiply by cell division, indicating that these algae had succeeded in establishing endosymbiosis. In contrast to previously published studies, our data show that an alga can successfully escape from the host’s digestive vacuole after acidosomal and lysosomal fusion with the vacuole has occurred, in order to produce endosymbiosis. Correspondence and reprints: Biological Institute, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

20.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号