首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄杰勋  莫建民  李非里  盛光遥 《生态学报》2013,33(12):3639-3647
农业土壤和黑碳(BC)两种不同的吸附剂吸附苯酚平衡后分离,每组一部分不做处理,另一部分通过加入无酚灭菌溶液脱附平衡后分离,制备得到在不同吸附位点上吸附有苯酚的两类不同类型的4种吸附苯酚的吸附剂,研究了在不同Pseudomonasputida ATCC 11172菌密度条件下吸附在这4种吸附剂上的苯酚的脱附行为.结果表明,土壤及BC对苯酚的吸附均呈现明显的非线性,可用Freundlich模型描述.吸附态的苯酚能否被微生物利用取决于微生物及吸附剂的性质,BC具有发达的微孔结构,微孔小于假单胞菌细胞尺寸,导致假单胞菌无法直接利用吸附在BC上的苯酚;土壤基本无微孔结构,微生物较易与吸附的苯酚发生表面接触,直接利用吸附态苯酚.BC和土壤上的吸附态苯酚的脱附行为能用三元位点模型很好地描述,模型计算结果表明BC上的苯酚脱附主要受慢速脱附和极慢速脱附控制,微生物降解速率受脱附控制,降解可加速BC上的慢速脱附和极慢速脱附;土壤上的苯酚脱附主要受快速脱附控制,微生物降解不受脱附速率限制,对土壤上的脱附行为基本无影响.  相似文献   

2.
This work develops and utilizes a non-steady-state model for evaluating the interactions between sorption and biodegradation of hydrophobic organic compounds in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase, and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rates: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. The results of liquid tests indicate that biodegradation of the soil-soluble organic fraction did not significantly enhance the biodegradation rate. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but at a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller-bottle slurry test. The model with sorbed-phase biodegradation and the same biokinetic parameters, but unique mass transfer coefficients, simulated the experimental data in both slurry tests most successfully. Reduced mass transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.  相似文献   

3.
Urea-formaldehyde polymer is currently used as asorbent for containment and clean up of hydrocarbons. The aerobic biodegradability of this polymer andhydrocarbons sorbed to the polymer were tested. Soilmicroorganisms readily grew on the polymer, and twoorganisms, a bacterium and a fungus, capable of growthon the polymer were isolated. However, biodegradationof the polymer was very slow and possibly incomplete. Biodegradation of the polymer was evident as a changein appearance of the polymer, but disappearance of thepolymer was not detectable in liquid culturesincubated for six months or soil cultures incubatedfor one month. Destruction of the polymer by soilmicroorganisms at ambient temperature does not appearto be practical. Degradation of 14C-labeledhexadecane and phenanthrene mixed with crude oil inliquid cultures inoculated with soil microorganismswas used as an estimate of general hydrocarbondegradation. When nitrogen was not limiting, therates of hexadecane and phenanthrene degradation werethe same, whether those hydrocarbons were sorbed tothe polymer or not sorbed. When nitrogen waslimiting, the polymer stimulated the rate ofhexadecane degradation but not the rate ofphenanthrene degradation. The polymer may stimulatehexadecane degradation by serving as a source ofnitrogen. However, optimal degradation of sorbedhydrocarbons requires nitrogen addition. The resultssuggest that it may be feasible to decontaminate spentpolymer by biodegradation of sorbed hydrocarbons.  相似文献   

4.
Copper mobility and availability in soil environments is largely controlled by Cu sorption reactions as well as its chemical forms. In this study, equilibrium, kinetic batch experiments, and a chemical fractionation scheme were carried out to evaluate effects of drinking water treatment residual (DWTR) application on sorption and bioavailability of Cu in three arid zone soils having different properties. Distinct differences in the amounts of Cu sorbed among the different soils were observed where highest sorption was associated with clay, OM, and CEC contents. The quantity of Cu sorbed on the three studied soils drastically increased as a result of increasing rates of DWTR application from 2% to 12% (w/w). Freundlich distribution coefficient (Kf) values indicate that Cu sorption affinities for the studied soils followed the trend Typic torrifluvent (TF) > Typic calciorthids (CO) > Typic torripsamment (TP) soils. The sorption of Cu was initially fast with 95, 92, and 73% of Cu sorbed on TF and CO and TP unamended soils, respectively, in the first 60 min. Following the initial fast reaction, the sorption reaction continued for 63 h, after which only a small amount of additional sorption occurred (2–6%). The parabolic diffusion law and the power function models described Cu sorption kinetics in all the sorbents studied equally well as the R2 values were quite high and SE values were low. Addition of DWTR drastically reduced non-residual (NORS) Cu and simultaneously increased residual (RS) Cu fractions. At 12% application rate, DWTR decreased NORS-Cu in nonamended soils from 10.9 to 4.2, from 50.2 to 21.5, and from 78.6 to 33.3% in TF, CO, and TP soils, respectively. Our results suggest that as the application rate of DWTR to Cu-contaminated soils increased, more Cu was associated with the residual fractions, which decreased potential Cu mobility and bioavailability in these soils.  相似文献   

5.
Gong R  Feng M  Zhao J  Cai W  Liu L 《Bioresource technology》2009,100(2):975-978
In this paper, waste sawdust was functionalized by monosodium glutamate for improving its cationic sorption capacity. The functionalized sawdust (FS) and crude sawdust (CS) were compared for their malachite green (MG) sorption behaviors with a batch system. The effects of various experimental parameters (e.g. initial pH, sorbent dose, dye concentration, contact time, and temperature etc.) were investigated and the sorption kinetic and thermodynamic characteristics were understood. The MG removal ratios on FS and on CS increased with increasing initial pH and came up to the maximum value beyond pH 6 for FS and pH 8 for CS, respectively. The ratio of sorbed MG kept above 95% for 250 mg/l of MG solution when 2.0 g/l or more of FS was used. The MG removal percentage decreased more on CS than on FS with increasing initial MG concentration. The isothermal data of MG sorbed on FS and on CS followed the Langmuir model. By functionalizing, the sorption capacity (Q(m)) of sawdust for MG was increased from 85.47 to 196.08 mg/g and the sorption equilibrium time of MG was shortened from 23 to 4.5 h. The MG sorption processes on FS and on CS followed the pseudo-second-order rate kinetics. The sorptions of MG on FS and on CS were spontaneous and exothermic processes and lower temperatures were favorable for the sorption processes.  相似文献   

6.
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed.  相似文献   

7.
Assessment of Bioavailability of Soil-Sorbed Atrazine   总被引:4,自引:1,他引:3       下载免费PDF全文
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

8.
花生壳粉生物吸附水溶液中阴离子染料的研究   总被引:1,自引:1,他引:0  
An untried,low cost, locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated. Powder prepared from peanut hull had been used for hiosorption of three anionic dyes, amaranth (Am), sunset yellow (SY) and fast green FCF (FG). The effects of various experimental parameters (e.g.initial pH and dye concentration, sorbent dosage, particle size, ion strength, contact time etc.) were examined and optimal experimental conditions were decided. At initial pH 2.0, three dyes studied could be removed effectively.When the dye concentration was 50 mg" L-1 the percentages of dyes sorbed was 95.5 % in Am, 91.3 % in SY and 94.98 % in FG, respectively. The ratios of dyes sorbed had neared maximum values in all three dyes whensorbent dose of 5.0 g·L^-1 and the sorbent particle size in 80—100 mesh was used. The increasing the ion strength of solution caused the decrease in biosorption percentages of dyes. The equilibrium values arrived at about 36 hour for all three dyes. The isothermal data of biosorption followed the Langmuir and Freundlich models. The biosorption processes conformed the pseudo-first-order rate kinetics. The results indicated that powdered peanut hull was an attractive candidate for removing anionic dyes from dye wastewater.  相似文献   

9.
Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10?14 m3/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.  相似文献   

10.
11.
《Ecological Indicators》2008,8(3):181-190
We sought to determine the effectiveness of experimental disturbances for assessing resilience and stability in a Spartina alterniflora salt marsh. To do this, we applied disturbances of different intensities along a gradient of sediment deposition that doubled as a gradient of known stress, being associated in previous studies with numerous measures of plant vigor and soil condition. Using this gradient as a standard, we postulated a priori that areas receiving sediment were less stressed than areas which received no sediment, and therefore would be more stable and recover more rapidly after experimental disturbances.For the vegetation, we found that our estimates of resilience and stability were strongly and positively affected by sediment deposition, and therefore agreed with our a priori estimates. After lethal disturbance (herbicide application), vegetation in plots not receiving sediment failed to recover, and the affected marsh turned into a mudflat and remained so during the period of observation (>2 years). In contrast, plots receiving high and moderate amounts of sediment recovered rapidly after lethal disturbance (8–11% recovery month−1 to 50% of control levels [dependent variable was a composite variable describing vegetation]). After non-lethal disturbance (trimming at the soil surface) all study plots recovered, with rate of vegetative recovery being directly associated with degree of sediment deposition. For edaphic parameters, there no was effect of disturbance, and thus these parameters appeared to be resistant to vegetation removal. These parameters appeared to be more powerfully affected by other factors, such as water level fluctuations and sediment addition.We conclude that experimental disturbances accurately assessed stress along a known stress-gradient. They also provided additional information about the underlying stress in the system. In particular, it was intriguing that in stressed areas S. alterniflora grew in elevated “hummocks” which appeared unable to send rhizomes into denuded areas or to recover after root death. Because recovery after experimental disturbances depends on a variety of plant-soil processes, we suggest that this recovery can be used as a bio-indicator of ecosystem condition that provides insight into important underlying determinants of structure and function.  相似文献   

12.
The influence of sorption of bacteria, as well as 2,4-dichlorophenol (2,4-DCP), on themineralization of 100 g l-1 of the organic compound was examined in an aquifer material under advective flow conditions (column displacement technique). The study was designed to distinguish the rates and extent of biodegradation of the sorbed and the dissolved trace organic and the contribution of sorbed and suspended bacteria to the degradation. The degradation of dissolved 2,4-DCP was significantly faster thanthe degradation of the same compound sorbed to the solids, and suspended bacteriadegraded the dissolved compound at a higher rate than sorbed bacteria, also on a percell basis. The suspended bacteria degraded 8–12% of the added dissolved 2,4-DCP, while sorbed bacteria made a smaller contribution by degrading about 5% of sorbed 2,4-DCP. No degradation was seen with sorbed 2,4-DCP and suspended bacteria, and a marginal contribution was made by sorbed bacteria on the degradation of dissolved 2,4-DCP (<0.4%).  相似文献   

13.
Assessment of bioavailability of soil-sorbed atrazine   总被引:4,自引:0,他引:4  
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO(2) production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

14.
The influence of hydrodynamic conditions on the dissolution rate of crystalline naphthalene as a model polycyclic aromatic hydrocarbon (PAH) was studied in stirred batch reactors with varying impeller speeds. Mass transfer from naphthalene melts of different surface areas to the aqueous phase was measured and results were modeled according to the film theory. Results were generalized using dimensionless numbers (Reynolds, Schmidt, and Sherwood). In combined mass transfer and biodegradation experiments, the effect of hydrodynamic conditions on the degradation rate of naphthalene by Pseudomonas 8909N was studied. Experimental results were mathematically described using mass-transfer and microbiological models. The experiments allowed determination of mass-transfer and microbiological parameters separately in a single run. The biomass formation rate under mass transfer limited conditions, which is related to the naphthalene biodegradation rate, was correlated to the dimensionless Reynolds number, indicating increased bioavailability at increased mixing in the reactor liquid. The methodology presented in which mass transfer processes are quantified under sterile conditions followed by a biodegradation experiment can also be adapted to more complex and realistic systems, such as particulate, suspended PAH solids or soils with intrapartically sorbed contaminants when the appropriate mass-transfer equations are incorporated.  相似文献   

15.
Distribution of Iron in Sphaerotilus and the Associated Inhibition   总被引:1,自引:1,他引:0       下载免费PDF全文
The distribution of iron between the sheaths and the cells of iron-inhibited Sphaerotilus cultures was determined. The experiment was conducted with different soluble iron forms as inhibitors. The growth inhibition was found to be related to the iron sorbed by the cells rather than by the sheaths. At the 90% inhibition level, iron sorbed by the cells ranged from 13 to 15 mg/g of organism for all three inhibitors tested. For 50% inhibition, the iron sorbed by the cells ranged from 7 to 8 mg/g of organism. The iron sorbed by the sheaths varied widely, ranging from 23 to 118 mg/g of organism at the 90% inhibition level and from 11 to 61 mg/g at the 50% inhibition level. The degree of inhibition is closely related to the amount of iron sorbed by the cells, which in turn is a function of the type of iron compound or complex used. The solubility of the iron is a major consideration.  相似文献   

16.
DNA degradation and its temperature dependence as a function of linear energy transfer were studied in Excherichia coli using fast proton irradiation as the initiating agent. The data indicate that radiation-induced DNA degradation can proceed by two processes. The first, or fast component, begins immediately after irradiation with 60Co γ-rays or with fast protons at doses less than 1010 protons/cm2. The rate is high and involves a maximum of about 50% degradation. It is elicited more efficiently by protons of high linear energy transfer. The second, or slow component, results from higher doses of fast proton bombardment. There is a delay between irradiation and the initiation of this slower component, but 100% of the DNA complement is degraded. The data indicate that both processes are enzyme-mediated, the first probably by normal DNA-related activity and the second by DNAase activity.  相似文献   

17.
Details are presented of a simple mathematical framework that allows 15N tracer experiments to be interpreted in terms of the main processes of the soil/plant nitrogen cycle. The calculations, all of which can be performed on a scientific calculator, yield the rates of gross mineralization and nitrification and the crop nitrogen uptake occurring as ammonium and nitrate. Two procedures are presented. One requires paired experiments with labelled ammonium and unlabelled nitrate as one treatment, and unlabelled ammonium and labelled nitrate as the other. The second procedure requires only the labelled ammonium, unlabelled nitrate treatment. Example calculations are presented using actual experimental data. The interpretative procedure uses the fact that the rate of isotopic dilution in an ammonium pool labelled with 15N is a function of the rate at which unlabelled ammonium is introduced into the pool via mineralization. Similarly, the rate of isotope dilution in an 15N labelled nitrate pool is a function of the rate at which unlabelled nitrate is introduced into the pool via nitrification.  相似文献   

18.
The use of palm kernel fibre, a readily available agricultural waste product for the sorption of Methylene blue from aqueous solution and the possible mechanism of sorption has been investigated at various fibre doses. The extent of dye removal and the rate of sorption were analyzed using two kinetic rate models (pseudo-first and pseudo-second-order kinetic models) and two diffusion models (intraparticle and external mass transfer models).

Analysis of the kinetic data at different sorbent dose revealed that the pseudo-first order kinetics fitted to the kinetic data only in the first 5 min of sorption and then deviated from the experimental data. The pseudo-second-order kinetic model was found to better fit the experimental data with high correlation coefficients at the various fibre dose used. The dye sorption was confirmed to follow the pseudo-second-order model by investigating the relationship between the amount of dye sorbed and the change in hydrogen ion concentration of the dye solution and also the dependence of dye uptake with solution temperature. It was found that the change in hydrogen ion concentration and increase in sorption temperature were directly related to the amount of dye sorbed, and activation energy was calculated to be −39.57 kJ/mol, indicating that the dye uptake is chemisorption, involving valence forces through sharing or exchange of electrons between sorbent and sorbate as covalent forces.

The intraparticle diffusion plots showed three sections indicating that intraparticle diffusion is not solely rate controlling. The intraparticle diffusion and mass transfer rate constants where observed to be well correlated with sorbent dose in the first 5 min of sorption, indicating sorption process is complex. It was found that at low sorbent dose the mass transfer is the main rate controlling parameter. However at high sorbent dose, intraparticle diffusion becomes rate controlling.  相似文献   


19.
Charge pulse relaxation studies were performed on cells of the giant marine alga Valonia utricularis. Two exponential voltage relaxations were recorded as found previously (Benz, R., and U. Zimmermann. 1983. Biophys. J. 43:13-26.). The parameters of the two exponential voltage decays were studied as a function of the chloride concentration in the artificial sea water. Replacement of external chloride by 2(N-morpholino)ethanesulfonate (Mes-) had a dramatic influence on the four relaxation parameters. This chloride dependence could not be satisfactorily explained by the simplified model used earlier. Accordingly, additional reaction steps had to be included in the model. Only two relaxation processes could be resolved under all experimental conditions. This means that the heterogeneous complexation reactions, kR (association), and kD (dissociation) were too fast to be resolved. Therefore a carrier model with equilibrium heterogeneous surface reactions was used to fit the experimental results. From the charge pulse data at different chloride concentrations the translocation rate constants of the free and complexed carriers, kS and kAS, through the membrane, as well as the total surface concentration of carrier systems, N0, could be evaluated. The results described here indicate that the cell membrane of Valonia utricularis contains an electrogenic transport system for chloride.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号