首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics and development of thermophilic anaerobic sludge in upflow staged sludge bed (USSB) reactors were studied. The compartmentalized reactors were inoculated with partially crushed mesophilic granular sludge and then fed with either a mixture of volatile fatty acids (VFA) or a mixture of sucrose and VFA. The staged degradation of the soluble substrate in the various compartments led to a clear segregation of specific types of biomass along the height of the reactor, particularly in reactors fed with the sucrose-VFA mixture. Both the biological as well as the physical properties of the cultivated sludge were affected by the fraction of nonacidified substrate. The sludge in the first compartment of the reactor treating the sucrose-VFA mixture was whitish and fluffy, most likely resulting from the development of acidifying bacteria. Sludge granules which developed in the top part of this reactor possessed the highest acetogenic and methanogenic activity and the highest granule strength as well. The experiments also revealed that the conversion of the sucrose-VFA mixture into methane gradually deteriorated at prolonged operation at high organic loading rates (50 to 100 g COD . L(-1) . day(-1)). Stable long-term performance of a reactor can only be achieved by preserving the sludge segregation along the height of the reactor. In the reactor fed solely with the VFA mixture little formation of granular sludge occurred. In this reactor, large differences in sludge characteristics were also observed along the reactor height. Li(+)-tracer experiments indicated that the hydraulic regime in the USSB reactor is best characterized by a series of at least five completely mixed reactors. The formation of granular sludge was found to influence the liquid flow pattern. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

3.
Different biofilm reactors for sulphide production by sulphate reducing bacteria were compared in a packed bed reactor and in two suspended carrier biofilm reactors. Lactate was used as carbon source in the experiments. The process was reversibly inhibited by free sulphide at 14 mM. The packed bed reactor was more efficient and less sensitive to changes. The maximum load in the system was 5.3 g sulphate/l.d.  相似文献   

4.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

5.
Two upflow sludge bed reactors (UASB) were operated for 80 days at 55 degrees C with methanol as the substrate with an organic loading rate (OLR) of about 20 g CODl(-1) per day and a hydraulic retention time (HRT) of 10 h. One UASB was operated without sulphate addition (control reactor-R1) whereas the second was fed with sulphate at a COD:SO4(2-) ratio of 10 (sulphate-fed reactor-R2), providing an influent sulphate concentration of 0.6 g l(-1). For both reactors, methanogenesis was the dominant process with no considerable accumulation of acetate. The methanol removal averaged 93% and 83% for R1 and R2, respectively, and total sulphate removal was achieved in the latter. The pathway of methanol conversion for both sludges was investigated by measuring the fate of carbon in the presence and absence of bicarbonate or specific inhibitors for a sludge sample collected at day 72. In both sludges, about 70% of the methanol was syntrophically converted to methane and/or sulphide, via the intermediate H2/CO2. A strong competition between methanogens and sulphidogens took place in the R2 sludge with half of the methanol-COD being used by methane-producing bacteria and the other half by sulphate-reducing bacteria. Acetate was not an important intermediate for both sludges, and played a slightly more important role for the sulphate-adapted sludge (R2), sustained by the higher amount of bicarbonate produced during sulphate-reduction. The pathway study indicates that, although acetate does not represent an important intermediate, the system is susceptible to its accumulation.  相似文献   

6.
Hamilton WA 《Biodegradation》1998,9(3-4):201-212
The cellular physiology of the sulphate-reducing bacteria, and of other sulphidogenic species, is determined by the energetic requirements consequent upon their respiratory mode of metabolism with sulphate and other oxyanions of sulphur as terminal electron acceptors. As a further consequence of their, relatively, restricted catabolic activities and their requirement for conditions of anaerobiosis, sulphidogenic bacteria are almost invariably found in nature as component organisms within microbial consortia. The capacity to generate significant quantities of sulphide influences the overall metabolic activity and species diversity of these consortia, and is the root cause of the environmental impact of the sulphidogenic species: corrosion, pollution and the souring of hydrocarbon reservoirs.  相似文献   

7.
The process of granule formation in upflow anaerobic sludge blanket (UASB) reactors was studied using oligonucleotide hybridization probes. Two laboratory-scale UASB reactors were inoculated with sieved primary anaerobic digester sludge from a municipal wastewater treatment plant and operated similarly except that reactor G was fed glucose, while reactor GP was fed glucose and propionate. Size measurements of cell aggregates and quantification of different populations of methanogens with membrane hybridization targeting the small-subunit ribosomal RNA demonstrated that the increase in aggregate size was associated with an increase in the abundance of Methanosaeta concilii in both reactors. In addition, fluorescence in situ hybridization showed that the major cell components of small aggregates collected during the early stages of reactor startup were M. concilii cells. These results indicate that M. concilii filaments act as nuclei for granular development. The increase in aggregate size was greater in reactor GP than in reactor G during the early stages of startup, suggesting that the presence of propionate-oxidizing syntrophic consortia assisted the formation of granules. The mature granules formed in both reactors exhibited a layered structure with M. concilii dominant in the core, syntrophic consortia adjacent to the core, and filamentous bacteria in the surface layer. The excess of filamentous bacteria caused delay of granulation, which was corrected by increasing shear through an increase of the recycling rate.  相似文献   

8.
Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors   总被引:38,自引:0,他引:38  
The state of the art for upflow anaerobic sludge blanket (UASB) reactors is discussed, focusing on the microbiology of immobilized anaerobic bacteria and the mechanism of granule formation. The development of granular sludge is the key factor for successful operation of the UASB reactors. Criteria for determining if granular sludge has developed in a UASB reactor is given based on the densities and diameters of the granular sludge. The shape and composition of granular sludge can vary significantly. Granules typically have a spherical form with a diameter from 0.14 to 5 mm. The inorganic mineral content varies from 10 to 90% of the dry weight of the granules, depending on the wastewater composition etc. The main components of the ash are calcium, potassium, and iron. The extracellular polymers in the granular sludge are important for the structure and maintenance of granules, while the inorganic composition seems to be of less importance. The extracellular polymer content varies between 0.6 and 20% of the volatile suspended solids and consists mainly of protein and polysaccharides. Both Methanosaeta spp. (formerly Methanothrix) and Methanosarcina spp. have been identified as important aceticlastic methanogens for the initial granulation and development of granular sludge. Immunological methods have been used to identify other methanogens in the granules. The results have showed that, besides the aceticlastic methanogens Methanosaeta spp. and Methanosarcina spp., hydrogen and formate utilizing bacteria are also present, e.g., Methanobacterium formicicum, Methanobacterium thermoautotrophicum, and Methanobrevibacter spp. Microcolonies of syntrophic bacteria are often observed in the granules, and the significant electron transfer in these microcolonies occurs through interspecies hydrogen transfer. The internal organization of the various groups of bacteria in the granules depends on the wastewater composition and the dominating metabolic pathways in the granules. Internal organization is observed in granules where such an arrangement is beneficial for an optimal degradation of the wastewater. A four-step model is given for the initial development of granular sludge. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Feasibility and engineering aspects of biological sulphate reduction in gas-lift reactors were studied. Hydrogen and carbon dioxide were used as energy and carbon source. Attention was paid to biofilm formation, sulphide toxicity, sulphate conversion rate optimization, and gasliquid mass transfer limitations. Sulphate-reducing bacteria formed stable biofilms on pumice particles. Biofilm formation was not observed when basalt particles were used. However, use of basalt particles led to the formation of granules of sulphate-reducing biomass. The sulphate-reducing bacteria, grown on pumice, easily adapted to free H(2)S concentrations up to 450 mg/L. Biofilm growth rate then equilibrated biomass loss rate. These high free H(2)S concentrations caused reversible inhibition rather than acute toxicity. When free H(2)S concentrations were kept below 450 mg/L, a maximum sulphate conversion rate of 30 g SO(4) (2-)/L . d could be achieved after only 10 days of operation. Gas-to-liquid hydrogen mass transfer capacity of the reactor determined the maximum sulphate conversion rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

11.
In this work, the anaerobic period of an anaerobic–aerobic sequencing batch reactor was found to allow the reductive decolourisation of azo dyes. 1-l reactors were operated in 24-h cycles comprising anaerobic and aerobic reaction phases, fed with a simulated textile effluent including a reactive type (Remazol Brilliant Violet 5R) or an acid type (Acid Orange 7) azo dye. The aim was to assess the role of different redox phenomena in the anaerobic decolourisation process. Selective inhibition of sulphate reducing bacteria was carried out in the sulphate-containing, reactive dye fed reactor, resulting in nearly complete, though reversible and inhibition of decolourisation. The acid dye fed reactor's supplementation with sulphate, though resulting in sulphate reduction, did not improve decolourisation. Other redox mediators, namely quinones, were more effective in promoting electron transfer to the azo bond. Bio-augmentation of the acid dye fed reactor with a pure sulphate reducer strain known to decolourise azo dyes, Desulfovibrio alaskensis, was also carried out. Decolourisation was improved, but apparently as a result of the carbon source change required to support D. alaskensis growth. A chemically mediated reduction of the azo bond coupled to biological sulphate reduction, thus seemed to account for the high decolourisation yields of both dyes.  相似文献   

12.
The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4–5 mg-LAS/l*day and a hydraulic retention time of one day.The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64–85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.  相似文献   

13.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

14.
Three laboratory-scale, upflow anaerobic reactors were operated for about 250 d to determine the effect of activated granular sludge with high density of sulfate reducing bacteria in the treatment of artificial acid mine drainage. Sulfate reducing bacteria in the granular sludge taken from the upflow anaerobic sludge blanket reactor were 1–2×106 c.f.u. g–1, which is at least 10 times higher than that of organic substrates such as cow manure and oak compost. The reactors with granular sludge effectively removed over 99% of heavy metals, such as Fe, Al, Cu, and Cd during the experiment. This result suggests a feasibility of the application of granular sludge as a source of sulfate reducing bacteria for the treatment of acid mine drainage.  相似文献   

15.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

16.
17.
Laboratory-scale upflow anaerobic sludge-bed reactors were inoculated with industrial granular sludge and fed with either propionate or propionate and sulfate. The population dynamics of the propionate-oxidizing bacteria Desulfobulbus sp. and the syntrophically growing strain SYN7 were studied in reactors by dot blot and in situ hybridization with 16S rRNA-based oligonucleotide probes.  相似文献   

18.
Mathematical models are useful tools to optimize the performance of granular sludge reactors. In these models, typically a uniform granule size is assumed for the whole reactor, even though in reality the granules follow a size distribution and the granule size as such affects the process performance. This study assesses the effect of the granule size distribution on the performance of a granular sludge reactor in which autotrophic nitrogen removal is realized through one-stage partial nitritation-anammox. A comparison is made between different approaches to deal with particle size distributions in one-dimensional biofilm models, from the use of a single characteristic diameter to applying a multiple compartment model. The results show a clear impact on the conversion efficiency of the way in which particle size distribution is modeled, resulting from the effect of the granule size on the competition between nitrite oxidizing and anammox bacteria and from the interaction between granules of different sizes in terms of the exchange of solutes. Whereas the use of a uniform granule size is sufficient in case only the overall reactor behavior needs to be assessed, taking into account the detailed granule size distribution is required to study the solute exchange between particles of different sizes. For the latter purpose, the application of the widespread software package Aquasim is limited and the development of dedicated software applications is required.  相似文献   

19.
The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB.  相似文献   

20.
厌氧生物处理技术因其具有有机负荷高、污泥产量低、能耗低等优点被广泛应用于各种废水处理中。厌氧颗粒污泥具有沉降性能好、微生物浓度高、有机负荷高等优点,极大地提高了废水处理效率。尤其在处理含高氨氮废水中,厌氧颗粒污泥的形成对反应器的高效生物脱氮至关重要。但到目前为止,厌氧反应器中的颗粒污泥形成及废水处理效果还缺乏系统的认识。鉴于此,总结了厌氧反应器中颗粒污泥的形成机制,分析了影响厌氧反应器中颗粒污泥形成的因素,论述了厌氧反应器中厌氧颗粒污泥生长的模拟,最后介绍了厌氧颗粒污泥在国内外的主流应用。厌氧反应器中颗粒污泥的形成是综合因素影响的结果,对影响厌氧颗粒污泥形成的每个因素都需要认真对待,可为在厌氧反应器中颗粒污泥的培育和应用提供理论指导和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号