首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have simultaneously quantitated alpha 1-adrenergic receptor occupation and agonist-elicited Ca2+ mobilization monitored as unidirectional 45Ca2+ efflux from intact BC3H-1 muscle cells in order to examine the relationship between the number of surface receptors occupied and the functional response. [3H]Prazosin has been used to measure receptor number as well as the binding kinetics with surface receptors, and the observed equilibrium and kinetic constants are in close accord with values obtained previously in cellular homogenates. Since alpha 1-agonist-elicited 45Ca2+ efflux can be monitored over intervals of 3 min or less and prazosin dissociation from its receptor has a t 1/2 of 44 min, prazosin can be employed to produce a pseudoirreversible inactivation of receptors. A comparison of the remaining receptors and residual response reveals an inverse linear relationship between receptors inactivated by prazosin and 45Ca2+ efflux. A similar result is obtained following fractional receptor inactivation with the irreversible alkylating agent phenoxybenzamine. Parameters of receptor occupation and response also correlate well for the agonist phenylephrine and for the competitive antagonist phentolamine. The unitary relationship between sites available for occupation and response indicates that the alpha 1 receptor does not function as an oligomer where fewer bound antagonist molecules are required to block the receptor than sites of agonist occupation necessary for activation. Moreover, substantial evidence has accrued in intact smooth muscle for a receptor reserve or nonlinear coupling between alpha 1 receptor occupation and contraction in smooth muscle. Our findings demonstrate that such behavior does not exist for alpha 1 receptor-elicited mobilization of Ca2+ in the BC3H-1 muscle cell.  相似文献   

2.
A stable cell line expressing mouse acetylcholine receptors (AChRs), named AM4, was established by cotransfecting into NIH 3T3 fibroblasts, alpha-, beta-, gamma-, and delta-subunit cDNAs plus the neor gene by calcium phosphate precipitation. Surface AChRs on AM4 cells contain all four subunits, sediment as a single approximately 9 S peak on sucrose gradients, and have the same ratio of alpha- to beta-subunits as surface AChRs from mouse BC3H-1 cells. The surface AChRs exhibit pharmacological properties identical to those obtained for BC3H-1 cells, including the association and dissociation rates of alpha-bungarotoxin, a low affinity and cooperative instantaneous dose-response curve, cooperative steady state agonist binding and desensitization, cooperative enhancement of agonist binding affinity by local anesthetics, and distinct affinities for curariform antagonists. Patch clamp measurements on AM4 cells reveal AChR single channel properties identical to those obtained from BC3H-1 cells, including a single class of channels with a conductance of 56 pS, short and long duration openings at low and high agonist concentrations, brief and intermediate closed duration components at low agonist concentrations, and six distinct closed duration components at high agonist concentrations. The biochemical, pharmacological, and single channel measurements indicate at least 95% of the surface AChRs on AM4 cells are alpha 2 beta gamma delta pentamers.  相似文献   

3.
A(3) adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A(3) adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine-5'-N-methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A(3) adenosine receptor showed a profile typical of these receptors in other cell lines (K:(D) = 1.3+/-0.08 nM; B(max) = 400+/-28 fmol/mg of proteins). The iodinated agonist, bound at 4 degrees C to whole transfected cells, was internalized by increasing the temperature to 37 degrees C with a rate constant of 0.04+/-0.034 min(-1). Agonist-induced internalization of A(3) adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02+/-0.0017 min(-1). Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization.  相似文献   

4.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

5.
Parameters associated with activation and desensitization of the nicotinic receptor in the BC3H-1 muscle cell line have been compared with the state transitions that result upon combination with agonist. 125I-labeled cobra alpha-toxin is found to bind to an apparent single class of surface nicotinic receptors on the cells in situ with a rate constant of 1.15 x 10(5) M-1 s-1. The competition between cholinergic ligands and alpha-toxin reveals that agonists, but not classical antagonists, will promote a slow conversion to a receptor state where the affinity for agonists is enhanced. Moreover, agonists such as carbamylcholine elicit a permeability increase to 22Na+ ions that slowly decrements at a rate and to an extent closely paralleled by the conversion of the receptor to the high affinity state. Upon removal of the agonist, both the affinity increase and the diminished permeability change are completely reversible and again exhibit similar kinetics for their return to the original state. A comparison of the capacity of full agonists to compete with alpha-toxin binding and elicit a permeability change suggests that in the absence of agonist, receptor predominates in a low affinity activatable state. Binding of agonists to the low affinity state exhibits little if any cooperativity (n = 0.97 to 1.31), while the corresponding permeability change appears more cooperative (n = 1.31 to 1.52). By contrast, when receptors have been previously equilibrated with agonists, occupation of the receptor occurs over a 3- to 5-fold lower concentration range. Binding following equilibration closely correlates with a concomitant decrease in activatable receptor resulting from equivalent exposure to agonist. Furthermore, under equilibrium conditions, the binding of full agonists is typified by a moderate degree of homotropic cooperativity (1.25 to 1.44), enabling the receptor to desensitize over a narrow range of agonist concentration. Simultaneous measurement of occupation and activation parameters has enabled us to compare a state function for desensitization which is generated from binding parameters with the reduction in permeability seen in the desensitization process. A scheme describing the association of agonist with two functionally distinct receptor states is developed to account for the cooperative relationship between agonist binding and desensitization of the receptor.  相似文献   

6.
The mechanism of insulin-induced down-regulation of surface membrane insulin receptors was studied in the muscle cell line BC3H-1. Down-regulation for the differentiated myocytes is dose- and time-dependent with a half-maximum response at 0.5 nM insulin and a maximum decrease of 50% in the number of surface insulin receptors following exposure to 20 nM insulin for 18 h at 37 degrees C, as confirmed by Scatchard analysis. These receptors were fully recoverable upon lysis of the down-regulated myocyte with Triton X-100, demonstrating that down-regulation is mediated solely by insulin-induced receptor internalization without detectable receptor degradation. Phospholipase C treatment of intact down-regulated cells and Triton X-100 treatment after subcellular fractionation showed that no cryptic or masked receptors were detectable within the plasma membrane. Insulin-induced receptor internalization was dependent upon cellular energy production, protein synthesis, and endocytosis, but was insensitive to agents which primarily affect lysosomal, cytoskeletal, or transglutaminase activities. The magnitude of insulin-induced down-regulation and the kinetics of down-regulation and recovery of cell surface receptors indicate that the surface and internal receptor pools are in dynamic equilibrium with each other. The kinetic data are accommodated by separate internalization rate constants for the unoccupied (0.01 h-1) and occupied (0.11 h-1) surface receptors and a single recycling rate constant (0.11 h-1) for the internalized receptors. This model also explains the previous apparently paradoxical finding in several other systems that down-regulation is more sensitive to hormone than hormone-receptor binding under physiologic conditions. Down-regulation in BC3H-1 myocytes, therefore, appears to be mediated solely by an insulin-induced increase in the receptor internalization rate constant and a consequent shift in the dynamic equilibrium between the surface and internalized receptor pools, resulting in a 50% decrease in the number of cell surface receptors. In other systems where the internalized hormone receptor is a substrate for rapid degradation, the essential role of this shift in mediating the down-regulation process may be obscured.  相似文献   

7.
Regulation of cellular Ca2+ movements by alpha 1-adrenergic receptors has been studied using 45Ca2+ flux techniques in monolayer cultures of intact BC3H-1 cells. Unidirectional 45Ca2+ efflux from BC3H-1 cells reveals multiphasic kinetics, with a major fraction of cellular Ca2+ residing in a slowly exchanging intracellular compartment. Stimulation of alpha 1-adrenergic receptors by the agonist phenylephrine substantially increases 45Ca2+ unidirectional efflux, accompanied by a far smaller increase in 45Ca2+ influx. The selective enhancement of 45Ca2+ unidirectional efflux upon alpha 1-adrenergic receptor activation results in a net 30-40% decline in total cell Ca2+ content, measured either by radioisotopic equilibrium techniques or by atomic absorption spectroscopy. The relatively large pool of Ca2+ responsive to alpha-adrenergic stimulation is not displaced by La3+ but can be depleted with the Ca2+ ionophore A-23187. These results indicate that alpha 1-adrenergic receptor activation predominantly mobilizes Ca2+ from intracellular stores, together with a much smaller increase in transmembrane Ca2+ permeability. This interpretation is supported by comparative 45Ca2+ flux studies using a sister clone of BC3H-1 cells possessing surface nicotinic acetylcholine receptors but no alpha 1-adrenergic receptors. Agonist stimulation of the cholinergic receptor opens a well characterized transmembrane ion permeability gate. Cholinergic receptor activation greatly enhances the observed 45Ca2+ unidirectional influx relative to efflux, leading to net elevation of cellular Ca2+ content as Ca2+ moves down its inwardly directed concentration gradient.  相似文献   

8.
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.  相似文献   

9.
We used selective inhibitors of the asparagine-linked oligosaccharide processing pathway to study the effect of sugar trimming on the functional properties of the nicotinic acetylcholine (ACh) receptor expressed in clonal mammalian BC3H-1 cells. Inhibitors of initial steps of the processing pathway (1-deoxynojirimycin[DNJ] and castanospermine[CS]) reduced the density of ACh receptors on the cell surface (3- to 5-fold) but their responsiveness to ACh was more reduced (5- to 10-fold). These results suggest that the function of the ACh receptor was altered. When the ACh receptors were expressed in the presence of DNJ or CS, analysis of ACh-evoked single-channel currents (-100 mV and 11 degrees C) revealed an approximate threefold reduction in the opening rate (control: 600-650 s(-1)), treated: 130-250 s(-1)) and an approximate twofold reduction in the rate of agonist dissociation (control: 900-1,000 s(-1), treated: 400-500 s(-1)). In addition, the proportion of brief duration bursts (tau = 50-100 microseconds) was increased (1.5- to 2-fold) by treatments with DNJ or CS. In contrast, an inhibitor of a late processing step (swainsonine) did not produce such alterations. The single-channel conductance was not altered by any of the three inhibitors, and the slopes of log-log dose-response curves at low concentrations and desensitization did not appear to be affected. Each inhibitor altered the electrophoretic mobility of the ACh receptor subunits. We conclude that early sugar trimming can influence the kinetics of the nicotinic ACh receptor in BC3H-1 cells.  相似文献   

10.
Cultured and propagated smooth muscle cells contain adenylate cyclase (AC) responsive to catecholamines and their analogues. Isoproterenol and zinterol were the most effective stimulants of AC activity with EC50 = 8.5 X 10(-8)M. They were followed by epinephrine, phenylephrine and norepinephrine (EC50 = 7.5 X 10(-7)M, 6.5 X 10(-6)M and 4 X 10(-6)M, respectively). When the selective antagonists for beta 1 and beta 2 receptors (beta 1-type practolol and atenolol, beta 1/beta 2-type propranolol and beta 2-type butoxamine) were tested against isoproterenol, epinephrine and norepinephrine stimulation of AC activity, the beta 1 in contrast to beta 2 antagonists were found ineffective. The alpha-blockers (phentolamine alpha 1/alpha 2-type antagonists) and yohimbine (alpha 2-type antagonist) alone or in the presence of propranolol did not significantly inhibit the catecholamine-induced enhancement of cAMP formation. On the other hand, prazosine (alpha 1-type antagonist) blocked the stimulatory effect of epinephrine and norepinephrine on AC system. Similarly, the alpha 2-agonist, clonidine, did not affect the catecholamines' stimulated AC activity while alpha 1 agonist, phenylephrine, induced an additive enhancement of norepinephrine production of cAMP. The findings of beta-2- and alpha-1-type adrenergic receptors in the cultured cerebrovascular smooth muscle provide additional support for the implicated involvement of adrenergic innervation in the regulation of cerebral blood flow and/or systemic blood pressure.  相似文献   

11.
The role of negatively charged amino acids in the F-loop of the beta 4 subunit in channel activation and desensitization was studied using the patch-clamp technique. The selected amino acids were changed to their neutral analogs via point mutations. Whole-cell currents were recorded in COS cells transiently transfected with the alpha 3 beta 4 nicotinic acetylcholine receptor. The application of acetylcholine (ACh), nicotine (Nic), cytisine (Cyt), carbamylcholine (CCh) and epibatidine (Epi) to cells clamped at -40 mV produced inward currents which displayed biphasic desensitization. The EC50 of Epi and Nic were increased by a factor of 3-6 due to mutations D191N or D192N. Only Epi remained an agonist in the double-mutated receptors with EC50 increased 17-fold. The interaction of the receptors with the competitive antagonist (+)tubocurarine (TC) was weakened almost 3-fold in the double-mutated receptors. The mutations increased the proportion of the slower desensitization component and increased the response plateau, resulting in decreased receptor desensitization. The double mutation substantially accelerated the return from long-term desensitization induced by Epi.  相似文献   

12.
The aim of the study was to examine the mechanisms by which ACh, acting via m2 receptors, regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. VIP induced VPAC(2) receptor phosphorylation and internalization in freshly dispersed smooth muscle cells. Co-stimulation with acetylcholine (ACh), in the presence of m3 receptor antagonist, 4-DAMP, augmented VPAC(2) receptor phosphorylation and internalization. The m2 receptor antagonist methoctramine or the c-Src inhibitor PP2 blocked the effect of ACh, suggesting that the augmentation was mediated by c-Src, derived from m2 receptor activation. ACh induced activation of c-Src and phosphorylation of GRK2 and the effects of ACh were blocked by methoctramine, PP2, or by uncoupling of m2 receptors from G(i3) with pertussis toxin. In conclusion, we identified a novel mechanism of cross-regulation of GRK2-mediated phosphorylation and internalization of G(s)-coupled VPAC(2) receptors by G(i)-coupled m2 receptors via tyrosine phosphorylation of GRK2 and stimulation of GRK2 activity.  相似文献   

13.
In vitro incubation studies with bovine parathyroid gland slices compared the relative responsiveness of parathyroid hormone (PTH) secretion to isoprotherenol, epinephrine or norepinephrine. Isoproterenol was the most potent and norepinephrine the least potent of the three stimuli, suggesting a beta 2 type of an adrenergic response. However in this in vitro system, tazalol, a selective beta 1 adrenergic agonist significantly stimulated PTH secretion, whereas terbutaline, a selective beta 2 agonist had no effect. In addition, practolol, a selective beta 1 adrenergic antagonist blocked isoproterenol- or tazolol-stimulated PTH secretion. In vivo studies in normal human subjects showed that injection of te nonselective beta agonist, isoproterenol, (0.15 mg s.c.) significantly increased, whereas injection of the selective beta 2 agonist, terbulatine (0.3 mg s.c.) had no effect on serum PTH levels. These latter studies with putative selective beta adrenergic agents suggest that the beta adrenergic receptor mediating PTH secretion is of the beta 1 type (in contrast to the studies above with nonselective agents). The studies suggest that the beta adrenergic receptor mediating PTH secretion apparently differs from the classical beta 1 receptor described in th myocardium or the classical beta 2 receptor described in the bronchial smooth muscle.  相似文献   

14.
Contractile and prostaglandin E (PGE)-producing effects of adrenergic agonists were compared in the rabbit isolated vas deferens to determine which adrenergic receptor(s) potentially could mediate neural responses. Additionally, interactions among receptors were elucidated by comparing responses to norepinephrine, phenylephrine and isoproterenol to those in the presence of selective adrenergic agonists or antagonists. Norepinephrine increased the force of muscle contraction and the immunoassayable PGE concentrations in a concentration-dependent manner with EC50's of 55 +/- 8 and 112 +/- 39 microM, respectively. Propranolol (10 microM) enhanced the contractile effects of norepinephrine (p less than 0.01) whereas yohimbine (100 microM) or prazosin (1 microM) reduced norepinephrine-induced contractions and PGE production (p less than 0.01). Propranolol did not alter the PGE production induced by norepinephrine. Metoprolol (100 microM) also enhanced contractile effects of norepinephrine (p less than 0.05). The beta adrenergic agonist, isoproterenol (100 nM), decreased the contractile, but not the PGE-producing, effects of phenylephrine (p less than 0.001). Isoproterenol, given alone, increased PGE concentrations and inhibited electrically-induced force generation in a concentration-dependent manner. These results are consistent with the presence of alpha receptors on the vas deferens which mediate smooth muscle contraction and PGE generation. Beta receptors which mediate relaxation and PGE production also are present. Tentative identification of the beta receptor subtype revealed the presence of a beta 1 receptor.  相似文献   

15.
The purpose of the present study was to determine whether an increased plasma corticosterone or dexamethasone levels induced by a single corticosterone or dexamethasone injection to conscious rats affects the hypothalamic-pituitary-adrenocortical (HPA) activity induced by adrenergic and cholinergic agonists. Male Wistar rats were pretreated subcutaneously (s.c.) with a single dose of dexamethasone (5 mg/kg) or corticosterone (25 mg/kg) 24 or 48 h before intraperitoneal (i.p.) administration of adrenergic agonists: phenylephrine, an alpha1-adrenergic receptor agonist, clenbuterol, a beta2-adrenergic agonist and noradrenaline acting predominantly on alpha1-adrenoreceptors, and cholinergic agonists: carbachol, a predominant muscarinic receptor agonist and nicotine, a nicotinic receptor agonist. Dexamethasone profoundly decreased the resting ACTH levels in control rats and given 24 h before each of the stimulatory agonist abolished the adrenergic- and cholinergic agonists-induced ACTH and corticosterone responses. Pretreatment with corticosterone of control rats did not substantially alter the resting plasma ACTH and serum corticosterone levels measured 24 and 48 h later. A single pretreatment with corticosterone abolished or powerfully inhibited, perhaps by a feedback mechanism, the ACTH and corticosterone responses induced 24 and 48 h later by all adrenergic and cholinergic agonists used in this study. These results indicate that prolonged administration of corticosterone is not necessary to induce almost complete suppression of the HPA responsiveness to adrenergic or cholinergic stimulation. Chronic treatment with corticosteroids to achieve glucocorticoid receptors desensitization does not seem to be required.  相似文献   

16.
The short (5-60 min) and long (24 hrs) term effects of norepinephrine (10 uM) and the phorbol ester, 12-0-tetradecanoyl phorbol-13-acetate (10 nM), on total cellular and surface-accessible alpha-1 adrenergic receptor number were determined in DDT1 MF-2 smooth muscle cells. The density of alpha-1 adrenergic receptors was determined with [3H]-prazosin in a crude cellular homogenate (total cellular receptors) and in intact cells at 4 degrees C (surface-accessible receptors). Under basal conditions, all receptors were accessible to the cell surface at 4 degrees C. Short term norepinephrine exposure caused an approximately 40% decrease in surface-accessible binding without a change in total receptor number. Long term norepinephrine exposure caused a further decrease in surface-accessible binding, and an approximately 30% decrease in total receptor number. In contrast, phorbol ester had no effect on surface-accessible or total receptor number with either short or long term exposure. These data suggest that sequestration of cell surface alpha-1 adrenergic receptors is an early step in the process of agonist-mediated down-regulation. In DDT1 MF-2 cells, phorbol ester, alone, does not mimmick the effect of agonist on receptor sequestration or number.  相似文献   

17.
Using the outside-out patch clamp recording technique together with a rapid solution exchange system, we measured ionic currents through nicotinic acetylcholine (ACh) receptor channels from BC3H-1 cells in response to rapid applications of 0.3-1,000 microM ACh. We used nonstationary fluctuation analysis of ensembles of responses to deduce the number of channels in the patch, the maximum open channel probability as a function of ACh concentration and the time course of a fast desensitization process. We found that: (a) Excised patches from BC3H-1 cells typically contain between 50 and 150 functional ACh receptor ion channels. (b) The open channel probability is proportional to [ACh]1.95 at low concentrations of ACh, is half-maximal at 20 microM ACh and saturates above 100 microM ACh. (c) ACh is a very efficacious agonist; 100 microM ACh opens at least 90% of the available channels. This estimate of efficacy is model-independent. (d) The rate of decay of the agonist-induced current is concentration-dependent. In the presence of 100 microM ACh the current decays with a time constant of 50-100 ms. It decays more slowly in the presence of lower concentrations of agonist but is relatively insensitive to voltage.  相似文献   

18.
Following agonist stimulation, most G protein-coupled receptors become desensitized and are internalized, either to be degraded or recycled back to the cell surface. What determines the fate of a specific receptor type after it is internalized is poorly understood. Here we show that the rapidly recycling beta2 adrenergic receptor (beta2AR) binds via a determinant including the last three amino acids in its carboxyl-terminal tail to the membrane fusion regulatory protein, N-ethylmaleimide-sensitive factor (NSF). This is documented by in vitro overlay assays and by cellular coimmunoprecipitations. Receptors bearing mutations in any of the last three residues fail to interact with NSF. After stimulation with the agonist isoproterenol, a green fluorescent protein fusion of NSF colocalizes with the wild type beta2AR but not with a tail-mutated beta2AR. The beta2AR-NSF interaction is required for efficient internalization of the receptors and for their recycling to the cell surface. Mutations in the beta2AR tail that ablate NSF binding reduce the efficiency of receptor internalization upon agonist stimulation. Upon subsequent treatment of cells with the antagonist propranolol, wild type receptors return to the cell surface, while tail-mutated receptors remain sequestered. Thus, the direct binding of the beta2AR to NSF demonstrates how, after internalization, the fate of a receptor is reliant on a specific interaction with a component of the cellular membrane-trafficking machinery.  相似文献   

19.
Nicotinic receptors containing alpha7 subunits are widely distributed in the central nervous system and are thought to be involved in a number of functions. However, it has been difficult to study alpha7-containing receptors in vivo because of a paucity of selective agonists. A new spirooxazolidinone compound, AR-R17779, was recently described as potent agonist at alpha7 receptors, but electrophysiological studies at other types of nicotinic receptors have not been carried out. We characterized the activity of AR-R17779 at alpha7, alpha4beta2, alpha3beta4, alpha3beta2, alpha3beta2alpha5 receptors expressed in Xenopus oocytes. In addition, since there is significant homology between nicotinic alpha7 and serotonin 5HT(3) receptors, the activity of AR-R17779 at expressed 5HT(3a) receptors was also examined. Finally, actions of tropisetron and ondansetron, two 5HT(3) antagonists, were explored. AR-R17779 was found to activate alpha7 receptors, but had no activity at other types of nicotinic receptors, and also had no activity at 5HT(3a) receptors. Tropisetron activated, while ondansetron acted as an antagonist, at alpha7 nicotinic receptors. The two 5HT(3) antagonists also acted as antagonists at alpha4beta2 and alpha3beta4 nicotinic receptors. Thus, AR-R17779 was confirmed to be a selective nicotinic alpha7 receptor agonist and to be without activity at 5HT(3) receptors. In contrast, the actions of tropisetron and ondansetron on nicotinic receptors were complex.  相似文献   

20.
Regulation of Ca2+-dependent glycogen phosphorylase activity by alpha 1-adrenergic and H1-histamine receptors has been examined in BC3H-1 muscle cells. Stimulation by either norepinephrine or histamine elevates the phosphorylase activity ratio within 5 s from a resting value of 0.37 +/- 0.03 to maximal values of 0.8-0.9. Phosphorylase activation by alpha-adrenergic agonists is sustained over 20-30 min of agonist exposure, whereas histamine exposure only transiently activates phosphorylase during the initial 5 min of stimulation. The initial activation of phosphorylase by either receptor is not attenuated by treated cells with Ca2+-deficient and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid-supplemented buffer, whereas the response to sustained adrenergic stimulation depends largely, but not totally, upon extracellular Ca2+. The involvement of protein kinase C in agonist responses was tested by treating cells with phorbol 12-myristate 13-acetate. Phorbol 12-myristate 13-acetate inhibits receptor-mediated mobilization of intracellular Ca2+ (IC50 = 3.6 nM) yet activates phosphorylase independently of agonist. Phorbol 12-myristate 13-acetate has no effect on cellular 45Ca2+ fluxes in the absence of agonist. Thus, the two receptors coordinately regulate intracellular signaling through Ca2+- and protein kinase C-mediated pathways. alpha 1-Adrenergic receptors elicit sustained phosphorylase activation whereas H1-histaminergic receptors desensitize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号