首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether IgE+ cells in the intestinal mucosa of nematode-infected mice were of a mast cell or a lymphocyte lineage, the intestinal mucosae of mast cell-deficient w/wv mice were examined for IgE+ cells after inoculation with Trichinella spiralis muscle-stage larvae. Immunofluorescence staining techniques were used to detect IgE associated with cells in the intestinal mucosa. Comparisons were made among four strains of mice, w/wv (mast cell-deficient), +/+ (normal congenic littermates of w/wv), BALB/c, and SJL, that were either uninfected controls or inoculated with T. spiralis. Tissue sections from the small intestine of T. spiralis-infected BALB/c, SJL, and +/+ mice were fixed in ethanol and were stained with an affinity-purified F(ab')2 rabbit anti-mouse IgE followed by FITC goat anti-rabbit IgG. Large numbers of cells in the intestinal mucosa exhibited bright fluorescence. When other sections of intestines from these mice were processed in Carnoy's fixative and were stained with alcian blue at low pH (a metachromatic stain for mast cells) or alcian blue followed by immunofluorescence staining for IgE, large numbers of mast cells were observed in the intestinal mucosa, and 70 to 90% stained positively for IgE. There was a considerable number of cells in the intestinal mucosa which were IgE+ but which did not stain with alcian blue. Few alcian blue-positive cells and no IgE+ staining cells were present in the intestinal mucosa of control, uninfected +/+, BALB/c, and SJL mice. To determine whether these IgE+ alcian blue-negative cells were of a lymphocyte or a mast cell lineage, the mast cell-deficient w/wv mouse strain was examined after infection with T. spiralis. In contrast to BALB/c, SJL, or +/+ mice, few cells in the intestinal mucosa of T. spiralis-infected w/wv mice stained with alcian blue or were positive for IgE. However, when the IgE response in the MLN of the w/wv mice was compared to the IgE response of BALB/c, SJL, and +/+ mice, numerous IgE+ cells, but no alcian blue-positive cells, were observed in the parenchyma of the MLN from all four strains of T. spiralis-infected mice. In addition, flow microfluorometric analysis of MLN cells stained for surface IgE in suspension showed a comparable proportion of IgE-bearing cells, which were mostly B lymphocytes, among all four strains of T. spiralis-infected mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
IFN-gamma-independent effects of IL-12 during intestinal nematode infection   总被引:6,自引:0,他引:6  
Expulsion of the gastrointestinal nematode Trichinella spiralis is associated with a pronounced mastocytosis mediated by a Th2-type response involving IL-4, IL-10, and IL-13. When exogenous rIL-12 was administered to T. spiralis-infected NIH mice, this resulted in significant suppression of intestinal mast cell responses, delayed worm expulsion, increased muscle larvae burdens, and a transient, but significant decrease in early Th2 cytokine secretion. rIL-12 treatment also altered chemokine expression in the jejunal mucosa. The effects of exogenous IL-12 administration were largely independent of IFN-gamma as shown by rIL-12 treatment of IFN-gamma knockout mice. Hence, IL-12 may play a significant biological role as a direct negative regulator of intestinal Th2 responses and may act to promote the survival of intestinal parasites in vivo also in the absence of IFN-gamma.  相似文献   

3.
Trichinella spiralis infection elicits a vigorous IgE response and pronounced intestinal and splenic mastocytosis in mice. Since IgE both activates mast cells (MC) and promotes their survival in culture, we examined its role in MC responses and parasite elimination in T. spiralis-infected mice. During primary infection, wild-type but not IgE-deficient (IgE(-/-)) BALB/c mice mounted a strong IgE response peaking 14 days into infection. The splenic mastocytosis observed in BALB/c mice following infection with T. spiralis was significantly diminished in IgE(-/-) mice while eosinophil responses were not diminished in either the blood or jejunum. Similar levels of peripheral blood eosinophilia and jejunal mastocytosis occurred in wild-type and IgE-deficient animals. Despite the normal MC response in the small intestine, serum levels of mouse MC protease-1 also were lower in parasite-infected IgE(-/-) animals and these animals were slower to eliminate the adult worms from the small intestine. The number of T. spiralis larvae present in the skeletal muscle of IgE(-/-) mice 28 days after primary infection was about twice that in BALB/c controls, and the fraction of larvae that was necrotic was reduced in the IgE-deficient animals. An intense deposition of IgE in and around the muscle larvae was observed in wild-type but not in IgE null mice. We conclude that IgE promotes parasite expulsion from the gut following T. spiralis infection and participates in the response to larval stages of the parasite. Furthermore, our observations support a role for IgE in the regulation of MC homeostasis in vivo.  相似文献   

4.
In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection.  相似文献   

5.
Our aim was to investigate the cause-effect relationship between intestinal inflammation induced by infection with enteric stages of Trichinella spiralis and decreased host food intake. A suppression of food intake in T. spiralis-infected rats occurred within the first 24 h postinfection (PI) and was maximized by day 6 PI. Food intake, cumulated over an 8-day PI period, decreased by 59% compared with uninfected animals. The anti-inflammatory glucocorticoid betamethasone 21-phosphate was orally administered to rats in their drinking water to suppress T. spiralis-induced jejunal inflammation. When treated with a low dose of glucocorticoid (5.2 microg/ml), food intake in infected rats was still significantly reduced, but only by 21% compared with glucocorticoid-treated, uninfected rats. At the highest glucocorticoid dose (10.4 microg/ml) administered, infection-induced reduction in food intake was not different from that of glucocorticoid-treated, uninfected counterparts. The elevation in jejunal myeloperoxidase activity caused by infection was also significantly blunted by oral glucocorticoid treatment. Our results suggest that suppressed host food intake during enteric T. spiralis infection is directly linked to intestinal inflammation.  相似文献   

6.
During infection with Trichinella pseudospiralis a strong neutrophil response is evident in the peripheral circulation of the mouse. This study compared the chemotactic response of neutrophils from uninfected, T. pseudospiralis-infected and Trichinella spiralis-infected mice to extracts from adult worms, newborn larvae and muscle-stage larvae of both species of parasite. The chemotactic response of neutrophils from T. pseudospiralis-infected mice to Zymosan-activated mouse serum (ZAMS) was significantly greater than that seen with neutrophils from either uninfected or T. spiralis-infected mice. Unstimulated chemotactic response of neutrophils from these three groups of animals to medium alone was similar. The chemotactic response of neutrophils from the three groups of animals was unaffected by either the concentration or source of serum. The chemotactic response of neutrophils from T. pseudospiralis-infected mice was significantly greater than that observed with cells from uninfected or T. spiralis-infected mice. Among parasite extracts, those from newborn larvae displayed the strongest chemotactic potential for neutrophils. Extracts from muscle larvae of T. spiralis and T. pseudospiralis and extracts of T. spiralis adult worms showed the weakest attraction for neutrophils. Extracts from adult T. pseudospiralis and from newborn larvae of both species elevated the chemotactic response of uninfected mouse neutrophils to a significantly greater level than that seen with ZAMS alone, while a significant reduction in this response was evident only when ZAMS was presented to neutrophils with 500 micrograms of extract from muscle larvae of T. pseudospiralis or T. spiralis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Trichinella spiralis infections provoke a variety of responses in the host, some of which involve stem cell proliferation and myeloid cell maturation, increases in the mast cell precursor cell populations, and maturation and eosinopoiesis. Very little is known about the influence of T. spiralis upon bone marrow stem cells and splenic colony formation. In the present communication we report that T. spiralis infection in mice stimulates the generation of colony-forming units in the spleen (CFU-S). Passive transfer of bone marrow cells from uninfected BALB/c mice to X-irradiated (650 R) T. spiralis-infected recipients resulted in a significant increase of CFU-S at 14 and 24 days postinfection. Passive transfer of bone marrow cells from T. spiralis-infected mice to X-irradiated uninfected mice also resulted in increased numbers of CFU-S in the donor mice at 24 days postinfection. These findings strongly suggest that T. spiralis infection conditions the microenvironment in the spleen which stimulates CFU-S.  相似文献   

8.
We have used a simplified gnotobiotic mouse model to evaluate the effects of single bacterial species, Lactobacillus paracasei NCC2461, on the metabolic profiles of intact intestinal tissues using high-resolution magic-angle-spinning 1H NMR spectroscopy (HRMAS). A total of 24 female gnotobiotic mice were divided into three groups: a control group supplemented with water and two groups supplemented with either live L. paracasei or a gamma-irradiated equivalent. HRMAS was used to characterize the biochemical components of intact epithelial tissues from the duodenum, jejunum, ileum, proximal, and distal colons in all animals and data were analyzed using chemometrics. Variations in relative concentrations of amino acids, anti-oxidant, and creatine were observed relating to different physiological properties in each intestinal tissue. Metabolic characteristics of lipogenesis and fat storage were observed in the jejunum and colon. Colonization with live L. paracasei induced region-dependent changes in the metabolic profiles of all intestinal tissues, except for the colon, consistent with modulation of intestinal digestion, absorption of nutrients, energy metabolism, lipid synthesis and protective functions. Ingestion of gamma-irradiated bacteria produced no effects on the observed metabolic profiles. 1H MAS NMR spectroscopy was able to generate characteristic metabolic signatures reflecting the structure and function of intestinal tissues. These signals acted as reference profiles with which to compare changes in response to gut microbiota manipulation at the tissue level as demonstrated by ingestion of a bacterial probiotic.  相似文献   

9.
Inbred mice infected with Trypanosoma musculi displayed wide variations in peak blood parasitemia. The most susceptible mice were C3H and A strain, while Balb/c, C57B1/6, and the related congenic B10 strains were the most resistant. The effect of an intestinal infection with either Trichinella spiralis or Heligmosomoides polygyrus on proliferation of T. musculi was investigated. T. spiralis infections given at the same time or up to 45 days before a T. musculi infection always caused an increase in blood parasitemia in C3H mice. Maximum increases were observed when T. spiralis infections preceded T. musculi by 5-10 days. In all mouse strains examined, dual infections increased maximum parasitemia by two- to four-fold, regardless of the degree of resistance of that mouse strain to either T. musculi or T. spiralis. This suggested that the immunological "cost" of a T. spiralis infection was the same for strains that were strong or weak responders to a primary infection with T. spiralis. In contrast, infection with H. polygyrus did not promote T. musculi parasitemia over the level of a single infection. The increase in blood parasitemia in T. spiralis-infected mice was largely due to the intestinal adult worm, but migratory larvae and mature muscle larvae also stimulated increased parasitemias. The increase in parasitemia was proportionate to the dose of T. spiralis, and the sex of the host did not affect the blood trypanosome level.  相似文献   

10.
Intravenous injection of anti-asialo GM 1 antibody into mice infected with Trichinella pseudospiralis resulted in rapid acute illness or death accompanied by a dramatic rise in hematocrit values in these animals. The described antibody-induced changes were reversible by intravenous infusion of Hanks' balanced salt solution (HBSS). These effects were not seen in uninfected mice or in Trichinella spiralis-infected mice injected with anti-asialo GM 1 antibody. Viability of T. spiralis or T. pseudospiralis infective L1 larvae, both isolated worms and those housed in muscle, was unaffected by exposure to anti-asialo GM 1 antibody and complement. Infectivity of larvae of T. pseudospiralis decreased significantly following exposure to anti-asialo GM 1 antibody. Release of protein by T. pseudospiralis infective L1 larvae during incubation in the presence of anti-asialo GM 1 antibody was significantly greater than that released by worms incubated in normal rabbit serum or HBSS. Protein released by infective L1 larvae of T. pseudospiralis was identified as Trichinella excretory/secretory antigens by immunoblot. Intravenous injection of T. pseudospiralis excretory/secretory products resulted in anaphylaxis in T. pseudospiralis-infected mice but not in uninfected or T. spiralis-infected mice. Excretory/secretory product-induced anaphylactoid response also was reversible by the intravenous injection of HBSS or by injection of an antihistamine. Significantly higher levels of total IgE were observed in sera from mice infected with T. pseudospiralis compared to uninfected or T. spiralis-infected mice. Binding of anti-asialo GM 1 antibody to the surface of T. pseudospiralis muscle larvae induced release of excretory/secretory antigen by the parasite.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Studies in mice infected with the gastrointestinal nematode parasite Nippostrongylus brasiliensis demonstrated that IL-4/IL-13 activation of Stat6 suppresses development of intestinal mastocytosis and does not contribute to IL-4/IL-13 production, but is still essential for parasite expulsion. Because expulsion of another gastrointestinal nematode, Trichinella spiralis, unlike N. brasiliensis expulsion, is mast cell dependent, these observations suggested that T. spiralis expulsion would be Stat6 independent. Instead, we find that Stat6 activation by IL-4/IL-13 is required in T. spiralis-infected mice for the mast cell responses that induce worm expulsion and for the cytokine responses that induce intestinal mastocytosis. Furthermore, although IL-4 induces N. brasiliensis expulsion in the absence of B cells, T cells, and mast cells, mast cells and T cells are required for IL-4 induction of T. spiralis expulsion. Thus, Stat6 signaling is required for host protection against N. brasiliensis and T. spiralis but contributes to expulsion of these two worms by different mechanisms. The induction of multiple effector mechanisms by Stat6 signaling provides a way for a cytokine response induced by most gastrointestinal nematode parasites to protect against most of these parasites, even though different effector mechanisms are required for protection against different nematodes.  相似文献   

12.
Because mice infected with Trichinella spiralis experience a pronounced, but transient, mastocytosis and eosinophilia in their intestine, this disease model was used to follow the fate of senescent T cell-dependent mast cells (MCs) and eosinophils. Very few MCs or eosinophils undergoing apoptosis were found in the jejunum during the resolution phase of the infection, even though apoptotic MCs were common in the large intestine. Although the mesenteric draining lymph nodes contained large numbers of apoptotic eosinophils, MCs were rarely found at this location. During the recovery phase, large numbers of MCs were present in the spleen, and many of these cells possessed segmented nuclei. These splenic MCs were not proliferating. Although MCs from the jejunum and spleen of noninfected mice failed to express mouse MC protease (mMCP) 9, essentially all of the MCs in the jejunal submucosa and spleen of T. spiralis-infected mice expressed this serine protease during the recovery phase. The MCs in the jejunum expressed mMCP-9 before any mMCP-9-containing cells could be detected in the spleen. The fact that mMCP-9-containing MCs were detected in splenic blood vessels as these cells began to disappear from the jejunum supports the view that many jejunal MCs translocate to the spleen during the recovery phase of the infection. During this translocation process, some senescent jejunal MCs undergo nuclear segmentation. These studies reveal for the first time different exit and disposal pathways for T cell-dependent eosinophils and MCs after their expansion in the jejunum during a helminth infection.  相似文献   

13.
Expulsion of the gastrointestinal nematode Trichinella spiralis is associated with pronounced mastocytosis mediated by a Th2-type response involving IL-4, IL-10, and IL-13. Here we demonstrate that IL-18 is a key negative regulator of protective immune responses against T. spiralis in vivo. IL-18 knockout mice are highly resistant to T. spiralis infection, expel the worms rapidly and subsequently develop low levels of encysted muscle larvae. The increased speed of expulsion is correlated with high numbers of mucosal mast cells and an increase in IL-13 and IL-10 secretion. When normal mice were treated with rIL-18 in vivo, worm expulsion was notably delayed, and the development of mastocytosis and Th2 cytokine production was significantly reduced. The treatment had no effect on intestinal eosinophilia or goblet cell hyperplasia but specifically inhibited the development of mastocytosis. Addition of rIL-18 to in vitro cultures of bone marrow-derived mast cells resulted in a significant reduction in cell yields as well as in the number of IL-4-secreting mast cells. In vivo treatment of T. spiralis-infected IFN-gamma knockout mice with rIL-18 demonstrated that the inhibitory effect of IL-18 on mastocytosis and Th2 cytokine secretion is independent of IFN-gamma. Hence, IL-18 plays a significant biological role as a negative regulator of intestinal mast cell responses and may promote the survival of intestinal parasites in vivo.  相似文献   

14.
The main objective of this study was to evaluate some probiotic characteristics of Lactobacillus spp. isolated from traditional sheep cheese, and to investigate the fermentative ability and viability in sheep and cow milks of a selected potential probiotic Lactobacillus (L.) strain, i.e., L. paracasei FS103. A total of 54 autochthonous Lactobacillus isolates were characterized for (i) acidity and bile salt resistance, (ii) tolerance to gastric and intestinal juice models, and (iii) antagonistic activity against pathogens and antibiotic resistance. Potential probiotic Lactobacillus has been used in sheep and cow milks for the manufacturing of experimental fermented milks. In these latter, pH value, microbial count, and sensory analysis were carried out. Lactobacillus FS103 classified as L. paracasei subsp. paracasei had a good survival in gastric and intestinal juice models, inhibited the growth of undesirable bacteria, and was susceptible to chloramphenicol, clindamycin, penicillin, amoxicillin, erythromycin, tetracycline, and ampicillin. Moreover, when used to produce experimental sheep and cow fermented milks, L. paracasei FS103 was able to acidify both milk types leading to a continuous pH decrease during all fermentation time (24 h). FS103 population remains viable at a level > 108 CFU mL−1 after 21 days of cold (4 °C) storage. The results of sensory analysis showed that scores related to consistency, taste, and astringent were significantly higher in sheep fermented milk while animal-like was less acceptable compared to cow fermented milk. Lactobacillus paracasei FS103 isolated from sheep cheese exhibited potential probiotic properties and suitable features for sheep and cow fermented milks maintaining high vitality during cold storage.  相似文献   

15.
Infection with the intestinal nematode Trichinella spiralis induces profound, but stereotypic pathological changes to the epithelium, which are common to many nematode infections. This study describes changes in jejunal epithelial protein expression that reflect these stereotypic responses. Adult male BALB/c mice were infected with T. spiralis, and groups (n = 4) examined on day 14/15 (time of worm rejection) were compared with uninfected controls (n = 4). Jejunal epithelium was harvested and extracted for two-dimensional gel electrophoresis. Tryptic peptide mass fingerprinting was used to create a reference map consisting of a total of 52 landmark spots. Of these, 16 were observed to change in intensity during infection. The changes observed at day 14/15 were of relevance to such mechanisms as lipid utilization and transport (increase in triacylglycerol lipase, and reduction in intestinal fatty acid binding protein) and innate immunity (appearance of intelectin-2). As a result, candidate molecules have been identified for further focused studies on their role in the host response to intestinal nematode infection.  相似文献   

16.
Eosinophil infiltrations were observed in the intestine and the muscle of both Trichinella spiralis-infected (WBxC57BL/6)F1-W/Wv mice and their littermates, WBB6F1-+/+, +/W, +/Wv, almost to the same extent. W/Wv mice did not show infiltration of subepithelial mast cells and globule leucocytes in response to T. spiralis infection. Increased numbers of these cells were observed in their littermates. Worms in W/Wv mice were retained for longer periods than those in littermates. Also, no difference was noted in the production of specific serum antibodies between W/Wv mice and their littermates, as determined by passive cutaneous anaphylaxis (PCA) for specific IgE and by indirect haemagglutination (IHA). These results suggest a possible participation of SMC, GL and eosinophils in the expulsion of adult T. spiralis.  相似文献   

17.
The H-2-compatible mouse strains, AKR and B10.BR, exhibit disparate responses to infection with the parasitic nematode Trichinella spiralis. The resistant AKR mice expel intestinal adult worms faster than susceptible B10.BR mice. We tested antibody and lymphokine responses in these strains. With respect to antibody responses, the B10.BR mice had 3- to 10-fold more serum IgE and T. spiralis-specific IgG1 and IgA than AKR mice. The B10.BR mice also had greater numbers of IgG and IgA plaque-forming cells than AKR mice. In contrast, AKR mice produced T. spiralis-specific IgG2a, whereas the B10.BR mice did not. The antibody response kinetics of these strains were similar. We also analyzed lymphokine secretion after restimulating lymphocytes in vitro with T. spiralis Ag. The AKR mesenteric lymph node cells produced more IFN-gamma and less IL-4 than the B10.BR mesenteric lymph node cells. The B10.BR splenocytes produced more IL-4 than the AKR splenocytes, although splenocyte IFN-gamma production was not different. The kinetics of IL-4 production also differed between the two strains. In summary, resistant AKR mice produced more IFN-gamma and T. spiralis-specific IgG2a than susceptible B10.BR mice, which produced more IL-4, IgE, and T. spiralis-specific IgG1. Our results are consistent with differential activation of Th cell subsets in T. spiralis-infected AKR and B10.BR mice.  相似文献   

18.
Wang CY  Lin PR  Ng CC  Shyu YT 《Anaerobe》2010,16(6):578-585
This study assessed potential probiotic Lactobacillus strains isolated from the feces of breast-fed infants and from Taiwanese pickled cabbage for their possible use in probiotic fermented foods by evaluating their (i) in vitro adhesive ability, resistance to biotic stress, resistance to pathogenic bacteria, and production of β-galactosidase; (ii) milk technological properties; and (iii) in vivo adhesive ability, intestinal survival and microbial changes during and after treatment. Five Lactobacillus isolates identified as Lactobacillus reuteri F03, Lactobacillus paracasei F08, Lactobacillus rhamnosus F14, Lactobacillus plantarum C06, and Lactobacillus acidophilus C11 that showed resistance to gastric juice and bile salts were selected for further evaluation of their probiotic properties. All the strains demonstrated the ability to adhere to Caco-2 cells, particularly, strain L. plantarum C06 and L. reuteri F03 showed satisfactory abilities, which were similar to that of the reference strain L. rhamnosus GG. The strains L. paracasei F08 and L. acidophilus C11 had the highest β-galactosidase activity. Most of the strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin, erythromycin, and penicillin. All the 5 strains elicited antibacterial activity against both Gram-positive (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) and -negative (Escherichia coli and Salmonella enterica) pathogens. Moreover, the strains L. reuteri F03, L. paracasei F08, and L. plantarum C06 could grow rapidly in milk without nutrient supplementation and reached 10? cfu/mL after 24 h of fermentation at 37 °C. The viable cell counts of the 3 strains remained above 10? cfu/mL after 21 d of storage at 4 °C. In the animal feeding trial, the number of intestinal lactobacilli increased significantly after administration of milk fermented with the 3 strains, and the counts of fecal coliforms and Clostridium perfringens were markedly reduced. Lactobacillus strains could also survive in the ileal intestinal tissue of the treated rats. Technologically interesting Lactobacillus isolates may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

19.
In our previous studies, we demonstrated that during Trichinella spiralis infection, T helper (Th) 2 cells contribute to the development of intestinal muscle hypercontractility and worm expulsion from the gut via STAT6. In addition, we have linked the altered muscle contractility to the eviction of the parasite and thereby to the host defense. However, the initial events linking infection to the development of muscle hypercontractility are poorly understood. In this study, we examined the contribution of CD40-CD40 ligand (CD40L) interaction in the development of intestinal muscle hypercontractility, in monocyte chemoattractant protein-1 (MCP-1) production, and in the Th2 response in CD40 ligand-deficient (CD40L -/-) mice infected with T. spiralis. Expulsion of intestinal worms was substantially delayed in CD40L -/- mice compared with the wild-type mice after T. spiralis infection. Consistent with delayed worm expulsion, there was a significant attenuation of intestinal muscle contractility in CD40L -/- mice. Infected CD40L -/- mice also exhibited marked impairment in the production of MCP-1, IL-4, IL-13, IgG1, IgE, and mouse mucosal MCP 1 (MMCP-1), and in goblet cell response. These results demonstrate that CD40-CD40 ligand interaction plays an important role in MCP-1 production, Th2 response, intestinal muscle hypercontractility, and worm expulsion in nematode infection. The present data suggest that the early events leading to the generation of Th2 response include CD40-CD40 ligand interaction, which subsequently influences the production of Th2 cytokines, most likely via upregulation of MCP-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号