首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2,6-Dimethyl-3,5-dimethoxycarbonyl-4-(o-difluromethoxyphenyl)- 1,4-dihydropyridine (ryodipine) blocks Ca-channels in phasic muscle fibres from ileofibularis and semitendinosus muscle of Rana esculenta. Ryodipine and some other newly synthesized dihydropyridines (10(-7)-10(-4) M) exerted a slight, if any, effect on the steady-state of potassium chord conductance in isotonic K+-sulfate solution. The effluxes of potassium and rubidium from the sartorius muscle of Rana temporaria also remained unchanged after addition of 2 x 10(-4) M ryodipine. Thus, the nonspecific dihydropyridine effect on ion transport seems to be poorly expressed.  相似文献   

2.
After a contracture response, skeletal muscle fibers enter into a state of contractile refractoriness or inactivation. Contractile inactivation starts soon after membrane depolarization, and causes spontaneous relaxation from the contracture response. Here we demonstrate that contractile inactivation continues to develop for tens of seconds if the membrane remains in a depolarized state. We have studied this phenomenon using short (1.5 mm) frog muscle fibers dissected from the Lumbricalis brevis muscles of the frog, with a two-microelectrode voltage-clamp technique. After a contracture caused by membrane depolarization to 0 mV, from a holding potential of -100 mV, a second contracture can be developed only if the membrane is repolarized beyond a determined potential value for a certain period of time. We have used a repriming protocol of 1 or 2 s at -100 mV. After this repriming period a fiber, if depolarized again to 0 mV, may develop a second contracture, whose magnitude and time course will depend on the duration of the period during which the fiber was maintained at 0 mV before the repriming process. With this procedure it is possible to demonstrate that the inactivation process builds up with a very slow time course, with a half time of approximately 35 s and completion in greater than 100 s. After prolonged depolarizations (greater than 100 s), the repriming time course is slower and the inactivation curve (obtained by plotting the extent of repriming against the repriming membrane potential) is shifted toward more negative potentials by greater than 30 mV when compared with similar curves obtained after shorter depolarizing periods (10-30 s). These results indicate that important changes occur in the physical state of the molecular moiety that is responsible for the inactivation phenomenon. The shift of the inactivation curve can be partially reversed by a low concentration (50 microM) of lanthanum ions. In the presence of 0.5 mM caffeine, larger responses can be obtained even after prolonged depolarization periods, indicating that the fibers maintain their capacity to liberate calcium.  相似文献   

3.
Determination of ionic calcium in frog skeletal muscle fibers   总被引:3,自引:0,他引:3       下载免费PDF全文
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM).  相似文献   

4.
5.
By means of fluorescent and phase-contrast microscopy the distribution of acid membrane organelles in normal and vacuolated frog skeletal muscle fibers has been studied. The vacuolation of the T-system was produced by loading and subsequent removal of glycerol (80-110 mM), or it appeared as a result of Zenker's necrosis. Acridine orange (AO) was used as a marker for acid intracellular compartments. AO accumulated in granules localized near the nuclear poles (more seldom around the nucleus)' and in the intermyofibrillar spaces. Typically the AO granules make up short longitudinal chains or regular pairs, where the distances between neighboring granules are short-dated to sarcomere lengths. Almost all granules emit in red, but about one third of them simultaneously emit in green, which is characteristic of AO monomers. In the vicinity of necrotic boundary or under the influence of brefeldin A, a green component of fluorescence appears in most granules. Treatment with monensin leads to granule disappearance. Vacuoles accompanying the glycerol treatment or developing of necrosis do not accumulate AO and exert no effect on the localization of AO-granules. The nature of cellular organelles accumulating AO in skeletal muscle fibers is discussed.  相似文献   

6.
Stiffness and force in activated frog skeletal muscle fibers.   总被引:2,自引:3,他引:2       下载免费PDF全文
Single fibers, isolated intact from frog skeletal muscles, were held firmly very near to each end by stiff metal clasps fastened to the tendons. The fibers were then placed horizontally between two steel hooks inserted in eyelets of the tendon clasps. One hook was attached to a capacitance gauge force transducer (resonance frequency up to approximately 50 kHz) and the other was attached to a moving-coil length changer. This allowed us to impose small, rapid releases (complete in less than 0.15 ms) and high frequency oscillations (up to 13 kHz) to one end of a resting or contracting fiber and measure the consequences at the other end with fast time resolution at 4 to 6 degrees C. The stiffness of short fibers (1.8-2.6 mm) was determined directly from the ratio of force to length variations produced by the length changer. The resonance frequency of short fibers was so high (approximately 40 kHz) that intrinsic oscillations were not detectably excited. The stiffness of long fibers, on the other hand, was calculated from measurement of the mechanical resonance frequency of a fiber. Using both short and long fibers, we measured the sinusoids of force at one end of a contracting fiber that were produced by relatively small sinusoidal length changes at the other end. The amplitudes of the sinusoidal length changes were small compared with the size of step changes that produce nonlinear force-extension relations. The sinusoids of force from long fibers changed amplitude and shifted phase with changes in oscillation frequency in a manner expected of a transmission line composed of mass, compliance, and viscosity, similar to that modelled by (Ford, L. E., A. F. Huxley, and R. M. Simmons, 1981, J. Physiol. (Lond.), 311:219-249). A rapid release during the plateau of tetanic tension in short fibers caused a fall in force and stiffness, a relative change in stiffness that putatively was much smaller than that of force. Our results are, for the most part, consistent with the cross-bridge model of force generation proposed by Huxley, A. F., and R. M. Simmons (1971, Nature (Lond.), 213:533-538). However, stiffness in short fibers developed markedly faster than force during the tetanus rise. Thus our findings show the presence of one or more noteworthy cross-bridge states at the onset and during the rise of active tension towards a plateau in that attachment apparently is followed by a relatively long delay before force generation occurs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Determinants of relaxation rate in skinned frog skeletal muscle fibers   总被引:3,自引:0,他引:3  
The influences of sarcomere uniformity andCa2+ concentration on the kineticsof relaxation were examined in skinned frog skeletal muscle fibersinduced to relax by rapid sequestration ofCa2+ by the photolysis of theCa2+ chelator, diazo-2, at10°C. Compared with an intact fiber, diazo-2-induced relaxationexhibited a faster and shorter initial slow phase and a fast phase witha longer tail. Stabilization of the sarcomeres by repeated releases andrestretches during force development increased the duration of the slowphase and slowed its kinetics. When force of contraction was decreasedby lowering the Ca2+concentration, the overall kinetics of relaxation was accelerated, withthe slow phase being the most sensitive toCa2+ concentration. Twitchlikecontractions were induced by photorelease ofCa2+ from a cagedCa2+ (DM-Nitrophen), withsubsequent Ca2+ sequestration byintact sarcoplasmic reticulum orCa2+ rebinding to cagedCa2+. These twitchlike responsesexhibited relaxation kinetics that were about twofold slower than thoseobserved in intact fibers. Results suggest that the slow phase ofrelaxation is influenced by the degree of sarcomere homogeneity andrate of Ca2+ dissociation fromthin filaments. The fast phase of relaxation is in part determined bythe level of Ca2+ activation.

  相似文献   

9.
《The Journal of cell biology》1984,99(4):1391-1397
Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments.  相似文献   

10.
A-band shortening in single fibers of frog skeletal muscle.   总被引:1,自引:0,他引:1       下载免费PDF全文
The question of whether A-bands shorten during contraction was investigated using two methods: high-resolution polarization microscopy and electron microscopy. During shortening from extended sarcomere lengths in the passive state, sarcomere-length changes were essentially accounted for by I-band shortening. During active shortening under otherwise identical conditions, the sarcomere length change was taken up approximately equally by A- and I-bands. Several potential artifacts that could give rise to apparent A-band shortening were considered and judged unlikely. Results obtained with polarization microscopy were similar to those obtained with electron microscopy. Thus, modest but significant thick filament shortening appears to occur during active sarcomere shortening under physiological conditions.  相似文献   

11.
12.
X-ray patterns from frog skeletal muscles at rest show a series of relatively weak meridional reflections which may be indexed as the 5, 7, 9, 11 and 13 orders of the repeat period of about 2 x 385 A. According to the model of the thin filaments structure, suggested by V. V. Lednev and G. M. Frank (1977), this period is specific for the activated or "switched on" state of the actin--containing filaments. At the same time, according to the generally accepted model (suggested in 1972), the axial repeat period of the thin filament structure is approximately equal to 385 A and does not depend on the functional state of the muscle. The existence of the repeat period of about 2 x 385 A in the thin filaments of a resting muscle suggests that even at rest the thin filaments of vertebrate skeletal muscle are not completely inhibited. It may be suggested that partial activation of the thin filaments in a resting muscle is the result of formation of long life rigorlike crossbridges, the existence of which was postulated by D. K. Hill in 1968 on the basis of his studies on resting tension in the frog skeletal muscle.  相似文献   

13.
When charge movement is measured from muscle fibers bathed in a moderately hypertonic solution, a secondary hump appears in the decay phase of the signal during the "on" of the test pulse. The hump can be suppressed by the application of dantrolene sodium or tetracaine. The amount of charge associated with the hump is approximately 20-25% of the total charge. All the observed properties of the hump charge are consistent with the possibility that it is more closely associated with calcium release from the sarcoplasmic reticulum, and thus more relevant to excitation-contraction coupling, than the rest of the charge.  相似文献   

14.
Calcium sparks were studied in frog intact skeletal muscle fibers using a home-built confocal scanner whose point-spread function was estimated to be approximately 0.21 microm in x and y and approximately 0.51 microm in z. Observations were made at 17-20 degrees C on fibers from Rana pipiens and Rana temporaria. Fibers were studied in two external solutions: normal Ringer's ([K(+)] = 2.5 mM; estimated membrane potential, -80 to -90 mV) and elevated [K(+)] Ringer's (most frequently, [K(+)] = 13 mM; estimated membrane potential, -60 to -65 mV). The frequency of sparks was 0.04-0.05 sarcomere(-1) s(-1) in normal Ringer's; the frequency increased approximately tenfold in 13 mM [K(+)] Ringer's. Spark properties in each solution were similar for the two species; they were also similar when scanned in the x and the y directions. From fits of standard functional forms to the temporal and spatial profiles of the sparks, the following mean values were estimated for the morphological parameters: rise time, approximately 4 ms; peak amplitude, approximately 1 DeltaF/F (change in fluorescence divided by resting fluorescence); decay time constant, approximately 5 ms; full duration at half maximum (FDHM), approximately 6 ms; late offset, approximately 0.01 DeltaF/F; full width at half maximum (FWHM), approximately 1.0 microm; mass (calculated as amplitude x 1.206 x FWHM(3)), 1.3-1.9 microm(3). Although the rise time is similar to that measured previously in frog cut fibers (5-6 ms; 17-23 degrees C), cut fiber sparks have a longer duration (FDHM, 9-15 ms), a wider extent (FWHM, 1.3-2.3 microm), and a strikingly larger mass (by 3-10-fold). Possible explanations for the increase in mass in cut fibers are a reduction in the Ca(2+) buffering power of myoplasm in cut fibers and an increase in the flux of Ca(2+) during release.  相似文献   

15.
The effects of caffeine on the process of excitation-contraction coupling in amphibian skeletal muscle fibers were investigated using the confocal spot detection technique. This method permits to carefully discriminate between caffeine effects on the primary sources of Ca2+ release at the Z-lines where the triads are located and secondary actions on other potential Ca Release sources. Our results demonstrate that 0.5 mM caffeine potentiates and prolongs localized action-potential evoked Ca2+ transients recorded at the level of the Z-lines, but that 1mM only prolongs them. The effects at both doses are reversible. At the level of the M-line, localized Ca2+ transients displayed more variability in the presence of 1 mM caffeine than in control conditions. At this dose of caffeine, extra-junctional sources of Ca2+ release also were observed occasionally.  相似文献   

16.
Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that the movement of q gamma in the transverse tubule membrane is the voltage-sensing step in excitation-contraction coupling.  相似文献   

17.
We have studied the effects of the sulfhydryl reagents on contractile responses, using either electrically stimulated single muscle fibers or short muscle fibers that were voltage-clamped with a two-microelectrode voltage-clamp technique that allows the fiber tension in response to membrane depolarization to be recorded. The sulfhydryl inhibitors para- chloromercuribenzoic acid (PCMB) and parahydroximercuriphenyl sulfonic acid (PHMPS), at concentrations from 0.5 to 2 mM, cause loss of the contractile ability; however, before this effect is completed, they change the fiber contractile behavior in a complex way. After relatively short exposure to the compounds, < 20 min, before the fibers lose their contractile capacity, secondary tension responses may appear after electrically elicited twitches or tetani. After losing their ability to contract in response to electrical stimulation, the fibers maintain their capacity to develop caffeine contractures, even after prolonged periods (120 min) of exposure to PHMPS. In fibers under voltage-clamp conditions, contractility is also lost; however, before this happens, long-lasting (i.e., minutes) episodes of spontaneous contractile activity may occur with the membrane polarized at -100 mV. After more prolonged exposure (> 30 min), the responses to membrane depolarization are reduced and eventually disappear. The agent DTT at a concentration of 2 mM appears to protect the fibers from the effects of PCMB and PHMPS. Furthermore, after loss of the contractile responses by the action of PCMB or PHMPS, addition of 2 mM DTT causes recovery of tension development capacity.  相似文献   

18.
Excitation-contraction coupling events leading to the onset of contraction were studied in single skeletal frog muscle fibers. This entailed the simultaneous measurement of the changes in intracellular calcium concentration using antipyrylazo III and fura-2, isometric force, and clamp voltage in a modified single vaseline gap chamber for the first time. The calcium transients were incorporated into an analysis of calcium binding to regulatory sites of troponin C (TnC) that permitted both a linear and a cooperative interaction. The analysis assumed that the onset of mechanical activation corresponds with a particular TnC saturation with calcium setting constraints for the calcium binding parameters of the regulatory sites. Using a simple model that successfully reproduced both the time course and the relative amplitudes of the measured isometric force transients over a wide membrane potential range, k(off) of TnC was calculated to be 78 s(-1) for the cooperative model at 10 degrees C. Together with the above constraints this gave a dissociation constant of 8.8 +/- 2.5 microM and a relative TnC saturation at the threshold (Sth) that would cause just detectable movement of 0.17 +/- 0.03 (n = 13; mean +/- SE). The predictions were found to be independent of the history of calcium binding to the regulatory sites. The observed delay between reaching Sth and the onset of fiber movement (8.7 +/- 1.0 ms; mean +/- SE, n = 37; from seven fibers) was independent of the membrane potential giving an upper estimate for the delay in myofilament activation. We thus emerge with quantitative values for the calcium binding to the regulatory sites on TnC under maintained structural conditions close to those in vivo.  相似文献   

19.
Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

20.
Summary The permeability coefficient for osmotically induced water flux across the sarcolemma of frog skeletal muscle fibers was determined. A new method for measuring the fiber volume change was applied, based on the fact that the resting tension of a slightly stretched muscle fiber depends on the bathing solution tonicity. Thus, after a quick change in tonicity, the volume change can be derived from the simultaneously occurring tension change. Fitting a theoretical curve to the experimentally obtained values yielded a filtration permeability coefficient for water of 0.54±0.12 cm4/osmol sec (mean ±sd, n=12). Doubling the driving force did not alter the productP Wx membrane area. TheP W value found in the present work is compared with that for muscle fibers and other cells given previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号