首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study investigated the effect of mechanical support on water transport properties and wood anatomy of stems of western poison oak, Toxicodendron diversilobum (T. & G.) Greene. This plant grows as a vine when support is present but as a shrub when support is absent. I compared vines and shrubs growing naturally in the field and those produced from cuttings of 11 source plants in a common garden. Huber value (xylem transverse area/distal leaf area) was lower but specific conductivity (water volume · time-1 · xylem transverse area-1 · pressure gradient-1) was higher in supported than unsupported plants both in the field and the common garden. The opposing effects of Huber value and mon garden. The opposing effects of Huber value and specific conductivity resulted in the same values of leafspecific conductivity (LSC, water volume · time-1 · distal leaf area-1 · pressure gradient-1) for supported and unsupported shoots at a given site. Therefore, for the same rates of evapotranspiration, supported and unsupported shoots will have the same pressure gradients in their stems. Vessel lumen composed a higher proportion of stem cross-section in supported than unsupported plants (due to slightly wider vessels and not to greater vessel density). These results suggest that the narrow stems of supported plants are compensated hydraulically by the production of wider vessels: at a given site, poison oak plants co-ordinate their leaf and xylem development such that their stems achieve the same overall conductive efficiencies (LSCs), regardless of support conditions.  相似文献   

2.
Summary Vessel dimensions (total diameter and length) were determined in tropical and subtropical plants of different growth forms with an emphasis upon lianas (woody vines). The paint infusion and compressed air methods were used on 38 species from 26 genera and 16 families in the most extensive survey of vessel length made to date. Within most stems there was a skewed frequency distribution of vessel lengths and diameter, with many short and narrow vessels and few long and wide ones. The longest vessel found (7.73 m) was in a stem of the liana (woody vine) Pithecoctenium crucigerum. Mean vessel length for 33 species of lianas was 0.38 m, average maximum length was 1.45 m. There was a statistically significant inter-species correlation between maximum vessel length and maximum vessel diameter. Among liana stems and among tree+shrub stems there were statistically significant correlations between stem xylem diameter and vessel dimensions. Lianas with different adaptations for climbing (tendril climbers, twiners, scramblers) were similar in their vessel dimensions except that scramblers tended to have shorter (but not narrower) vessels. Within one genus, Bauhinia, tendril climbing species had greater maximum vessel lengths and diameters than tree and shrub species. The few long and wide vessels of lianas are thought to hydraulically compensate for their narrow stem diameters. The many narrow and short vessels, which are present in the same liana stems, may provide a high resistance auxiliary transport system.  相似文献   

3.
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.  相似文献   

4.
The objective of this work was to study the existence of a trade-off between aerenchyma formation and root mechanical strength. To this end, relationships among root anatomical traits and mechanical properties were analysed in plant species with contrasting root structural types: Paspalidium geminatum (graminaceous type), Cyperus eragrostis (cyperaceous type), Rumex crispus (Rumex type) and Plantago lanceolata (Apium type). Variations in anatomical traits and mechanical strength were assessed as a function of root diameter by exposing plants to 0, 7, 15 and 30 d of control and flooded conditions. For each species, the proportion of root cortex was positively associated with the increment of root diameter, contributing to the increase in root porosity under both control and flooded conditions. Moreover, cell lysis produced an additional increase in root porosity in most species under flooded conditions (except R. crispus). Both structural types that presented a uniseriate layer (epidermis) to cope with compression (Rumex and Apium types) were progressively weakened as root porosity increased. This effect was significant even when the increment of root porosity was solely because of increased root diameter (R. crispus), as when both processes (root diameter and cell lysis) added porosity to the roots (P. lanceolata). Conversely, structural types that presented a multiseriate ring of cells in the outer cortex (graminaceous and cyperaceous types) maintained mechanical strength over the whole range of porosity, in spite of lysogenic processes registered in the inner cortex. In conclusion, our study demonstrates a strong trade-off between aerenchyma formation and mechanical strength in root structural types that lacked a multiseriate ring of tissue for mechanical protection in the outer cortex. The results suggest that this ring of tissue plays a significant role in maintaining the mechanical strength of roots when flooding induces the generation of additional aerenchyma tissue in the root cortex.  相似文献   

5.
水力失效是植物干旱死亡的主要机制。量化分析水力性状的种间和器官间差异是预测树木在气候变化下的响应甚至生存能力的基础。该研究对比分析了罗汉松科3种植物器官(茎和根)水平上水力功能性状的差异, 并探讨其与解剖结构和机械强度之间的关系。在湿生同质园内选择罗汉松科3种植物, 测定了茎和根木质部水力功能性状(最大比导率(Ks)和栓塞抗性(P50))、解剖结构性状(管胞直径(Dt)、水力直径(Dh)、管胞密度(Nt)、管胞壁厚(Tw)、纹孔膜直径(Dp)和纹孔密度(Np))和机械强度(木材密度(WD)和管胞厚度跨度比((t/b)2))。结果发现: (1)罗汉松科3种植物茎木质部不存在效率-安全权衡, 而根木质部存在权衡。(2)茎KsDp显著正相关, 与(t/b)2WD无关; 茎P50Dp极显著负相关, 与(t/b)2WD无关。(3)根KsDh显著正相关, 与Tw和(t/b)2极显著负相关; 根P50Tw、(t/b)2WD均极显著正相关。在罗汉松科植物中, 根木质部性状与输水效率和栓塞抗性的密切关系是解释其存在效率-安全权衡的基础, 而茎木质部的过度建造是茎不存在效率-安全权衡的原因, 木质部的过度建造仍需要更多的实验证据。  相似文献   

6.
It is well established that transpiration and photosynthetic rates generally increase in resprouting shoots after fire in chaparral shrublands. By contrast, little is known about how plant hydraulic function varies during this same recovery period. We hypothesized that vascular traits, both functional and structural, would also shift in order to support this heightened level of gas exchange and growth. We examined stem xylem‐specific hydraulic conductivity (Ks) and resistance to cavitation (P50) for eight chaparral shrub species as well as several potential xylem structural determinants of hydraulic function and compared established unburned plants and co‐occurring post‐fire resprouting plants. Unburned plants were generally more resistant to cavitation than resprouting plants, but the two groups did not differ in Ks. Resprouting plants had altered vessel structure compared with unburned plants, with resprouting plants having both wider diameter vessels and higher inter‐vessel pit density. For biomechanics, unburned plants had both stronger and denser stem xylem tissue than resprouting plants. Shifts in hydraulic structure and function resulted in resprouting plants being more vulnerable to dehydration. The interaction between time since disturbance (i.e. resprouting versus established stands) and drought may complicate attempts to predict mortality risk of resprouting plants.  相似文献   

7.
In water-limited environments, photosynthetic carbon gain and loss of water by transpiration are in a permanent tradeoff as both are contrarily regulated by stomata conductance. In semiarid steppe grasslands water limitation may covary with nitrogen limitation. Steppe grassland species are capable of optimizing their use of limiting resources, water and nitrogen, but regulation is still poorly understood. In a two-year experiment with addition of water (irrigation simulating a wet year) and nitrogen (0, 25, and 50 kg urea-N?ha?1) we assessed intrinsic water use efficiency (WUEi), nitrogen use efficiency (NUE), and related plant functional traits (PFTs) of four dominant C3 species (Leymus chinensis, Agropyron cristatum, Stipa grandis, and Artemisia frigida). Water and N fertilizer supplementation significantly increased plant primary production, and N effect was more pronounced under irrigated conditions. Parallel with the responses of plant production, a strong tradeoff between WUEi and NUE was detected: water supply increased NUE but decreased WUEi, whereas N addition slightly increased WUEi at the expense of NUE. This tradeoff occurred at the leaf level, and involved the responses of leaf N concentration and specific leaf area. WUEi of species changed among treatments in a predictable manner by the parameter of leaf N content per area. Dominant plant species commonly achieved a higher utilization efficiency of the more limiting resource via altering PFTs, which was an important mechanism of adaptation to variable resource limitation in semiarid grasslands.  相似文献   

8.
Tree-ring characteristics in four species were examined to address whether co-occurring mature trees of different successional status respond differently to drought, and whether saplings of these species have a greater response to drought than mature trees. We examined saplings and mature trees of paper birch, yellow birch, red maple and sugar maple, which varied in successional status (shade-tolerance) and co-occurred at Harvard Forest, Petersham, Mass., USA. Three drought events in 1964–1966, 1981 and 1995 were identified using climate data. For mature trees, there was no significant interspecific difference in relative changes in ring-width index (RWI) during the 1964–1966 and 1995 drought events. However, the interspecific difference was significant in the 1981 drought event. Response function analysis for mature trees showed that the radial growth of sugar maple was mainly controlled by spring and summer precipitation, red maple by spring and summer precipitation and temperature, yellow birch by winter and summer precipitation, and spring and summer temperature, and paper birch by spring and summer precipitation and spring temperature. Saplings of sugar maple and yellow birch, but not red maple and paper birch, showed significant positive correlations between RWI and annual total precipitation. In the 1995 drought event, saplings and mature trees of red maple and paper birch differed significantly in drought responses, but this was not true in sugar maple and yellow birch. Our results do not support a generally greater response in saplings than in mature trees, nor an early- versus late successional difference in drought responses.  相似文献   

9.
Spatial patterns in vessel diameter, vessel density and xylem conducting efficiency within a crown were examined in closed-canopy trees of silver birch (Betula pendula). The variation in anatomical and hydraulic characteristics of branches was considered from three perspectives: vertically within a crown (lower, middle and upper crown), radially along main branches (proximal, middle and distal part), and with respect to branch orders (first-, second- and third-order branches). Hydraulically weighted mean diameter of vessels (D h) and theoretical specific conductivity of the xylem (k t) exhibited no vertical trend within the tree crown, whereas leaf-specific conductivity of the xylem (LSCt) decreased acropetally. Variation in LSCt was governed by sapwood area to leaf area ratio (Huber value) rather than by changes in xylem anatomy. The acropetal increase in soil-to-leaf conductance (G T) within the birch canopy is attributable to longer path length within the lower-crown branches and higher hydraulic resistance of the shade leaves. D h, k t and LSCt decreased, while vessel density (VD) and relative area of vessel lumina (VA) increased distally along main branches. A strong negative relationship between vessel diameter and VD implies a trade-off between hydraulic efficiency and mechanical stability of xylem. D h and VD combined explained 85.4% of the total variation of k t in the regression model applied to the whole data set. Xylem in fast-growing branches (primary branches) had greater area of vessel lumina per unit cross-sectional area of sapwood, resulting in a positive relationship between branch radial growth rate and k t. D h, k t and LSCt decreased, whereas VD increased with increasing branch order. This pattern promotes the hydraulic dominance of primary branches over the secondary branches and their dominance over tertiary branches. In this way crown architecture contributes to preferential water flow along the main axes, potentially providing better water supply for the branch apical bud and foliage located in the outer, better-insolated part of the crown.  相似文献   

10.
Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.  相似文献   

11.
Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between xylem mechanical strength (xylem density and modulus of rupture) and xylem transport safety (resistance to cavitation and estimated vessel implosion resistance), and this was supported by PICs. Like stems, greater root cavitation resistance was correlated with greater vessel implosion resistance; however, unlike stems, root cavitation resistance was not correlated with xylem density and modulus of rupture. Also different from stems, roots displayed a trade-off between xylem transport safety from cavitation and xylem transport efficiency. Both stems and roots showed a trade-off between xylem transport safety and xylem storage of water and nutrients, respectively. Stems and roots differ in xylem structural and functional relationships, associated with differences in their local environment (air vs soil) and their primary functions.  相似文献   

12.
Recent advances in modelling the architecture and function of the plant hydraulic network have led to improvements in predicting and interpreting the consequences of functional trait variation on CO2 uptake and water loss. We build upon one such model to make novel predictions for scaling of the total specific hydraulic conductance of leaves and shoots (kL and kSH, respectively) and variation in the partitioning of hydraulic conductance. Consistent with theory, we observed isometric (slope = 1) scaling between kL and kSH across several independently collected datasets and a lower ratio of kL and kSH, termed the leaf‐to‐shoot conductance ratio (CLSCR), in arid environments and in woody species. Isometric scaling of kL and kSH supports the concept that hydraulic design is coordinated across the plant. We propose that CLSCR is an important adaptive trait that represents the trade‐off between efficiency and safety at the scale of the whole plant.  相似文献   

13.
14.
Four proteins with different physicochemical properties have been partitioned in reversed micelle systems: thaumatin, ribonuclease A, soybean trypsin inhibitor, and alpha-lactalbumin. The organic phase was formed by sodium salt (AOT) in isooctane, and the aqueous phase contained KCl, KBr, MgCl(2), or NaCl. Aqueous phase pH was varied between 2 and 13 and ionic strength from 0.1 to 1.0 M. Small changes in pH [around the isoelecric point (pl)] were found to influence the solubilization of ribonuclease A and trypsin inhibitor, but for thaumatin the pH change necessary to affect partition was much greater as a consequence of the difference in net charge (titration curves) of these protein molecules as pH changes. The type of ions present in the system was also a determining factor for partition; the larger ions (K(+)) produced more electrostatic screening and hence less protein solubilization than the smaller ions (Na(+)). With changes in ionic strength surface hydrophobicity was a dominant factor affecting solubilization of thaumatin in NaCl-containing systems at high pH. Charge distribution and hydrophobicity are thought to be important parameters when partitioning the protein alpha-lactalbumin. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Pinus radiata D. Don trees were grown in the presence and absence of the woody weed broom (Cytisus scoparius L.) on a dryland site for 2 years to determine the effects of competition from weeds on wood properties in juvenile trees. Wood property measurements made on cross-sections from the bark to the pith were scaled to convert results from distance to a time basis using sigmoidal equations fitted to monthly measurements of tree diameter. When averaged across the 2 years, the presence of the weeds significantly increased wood density (+11%), wall thickness (+6%) and modulus of elasticity (MOESS, +93%), and significantly reduced microfibril angle (MFA, –21%) and radial diameter (–8%). Radial growth rate was significantly correlated to wood density, and this relationship held across both treatment and age. At the seasonal scale, there was close correspondence between changes in MFA and growth rate. Ring width was significantly related to both MFA and MOESS at the annual scale. Although both of these relationships held across treatments, year significantly influenced the value of coefficients in the relationships. The results highlight the direct effects of the presence of weeds on wood properties and the need to consider silvicultural treatments appropriate for balancing gains in productivity with losses in wood quality for timber production.  相似文献   

16.
在晴天条件下 ,研究了 4年生甘肃红豆草 (Onobrychis viciaefolia scop.cv.‘Gansu’)、沙打旺 (Astragalus adsurgens)、东方山羊豆 (Galega orientalis)和多年生香豌豆 (L athyruslatifolius)人工种群花期 (5月 31日 )和再生期 (7月 10日 )的净光合速率、蒸腾速率、气孔导度、水分利用效率以及土壤贮水量和水分利用特征。结果表明 ,自 5月 31日 (花期 )至 7月 10日 (再生期 ) ,4种牧草对土壤水分消耗由大到小依次为 :沙打旺 119.2 mm、多年生香豌豆 91.6 mm、山羊豆 81.9m m和红豆草 73.8m m。红豆草在花期和再生期的净光合速率分别为 12 .4 1和 9.0 6μ mol CO2 / (m2 · s) ,沙打旺为 10 .10和 7.0 1μ m ol CO2 / (m2 · s) ;红豆草在花期和再生期的日均蒸腾速率 8.13和 9.0 5 m m ol H2 O/ (m2· s) ,沙打旺刈割前和刈割后蒸腾速率分别为 7.4 0和 6 .5 4mmol H2 O/ (m2· s) ,属于高光合、高蒸腾型。而山羊豆和多年生香豌豆则属于低蒸腾、低光合类型 ,花期和再生期 ,山羊豆的日均光合速率分别为 4 .74和 4 .88μm ol CO2 / (m2· s) ,多年生香豌豆为 4 .4 1和 4 .6 4 μ mol CO2 / (m2· s) ,相应的蒸腾速率分别达到 3.75和 5 .4 2 m mol H2 O/ (m2 · s) ,4 .74和 4 .34m mol H2 O/ (m2 · s)。  相似文献   

17.
Changes in hydraulic conductivity (K(h)) were measured in stems of Laurus nobilis L. during perfusion with KCl, NaCl or sucrose solutions. Ionic solutes induced marked increase of K(h) with respect to deionized water but sucrose had no effect. The kinetics of KCl-induced K(h) increase was measured together with changes in [K(+)] of the perfused solution. K(h) increases were paralleled by increases in the [K(+)](out)/[K(+)](in) ratio. Samples of different lengths or with increasing percentage loss of conductivity (PLC) due to xylem cavitation were tested, with the aim of increasing radial flow through intervessel pits. KCl solutions enhanced the K(h) of 12-cm-long samples with a concentration-dependent effect up to 100 mm KCl. DeltaK(h) increased from 3 to 30% in 1.5- and 12-cm-long samples, respectively and remained constant for longer samples. Increasing PLC induced an exponential increase in DeltaK(h). PLC measured with KCl solutions was significantly less than that measured with deionized water, suggesting that measurements of PLC can be affected by the composition of the perfused solution. Experiments support the hypothesis that the 'ionic effect' is mediated by physico-chemical changes of pectins of the pit membranes and raise the possibility that plants might alter the ionic composition of the xylem sap to alleviate the hydraulic impact of cavitation.  相似文献   

18.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

19.
树木叶片的水力效率和安全性会对水分条件的改变做出一定的响应, 进而影响树木的生长和分布, 然而叶导水率(Kleaf)和叶水力脆弱性(P50)对不同水分条件的响应模式及其影响因素尚不清楚。该研究选取了晋西北关帝山和黑茶山两种水分条件下的8种树种, 测量其水力性状、叶片导管和形态性状, 比较两地不同树种的KleafP50的变化, 分析叶片水力效率和安全性之间的权衡关系, 并探讨叶片水力性状在不同树种及水分条件下的响应模式及其驱动因素。结果表明: 对同一树种而言, 湿润的关帝山叶最大导水率(Kmax)和P50均高于干旱的黑茶山; 对同一地区而言, 从在高水分条件下生长的树种到在易干旱环境生长的树种, KmaxP50均逐渐下降。KmaxP50、膨压丧失点水势(TLP)之间均存在显著相关关系。两地叶片P50与导管密度、导管塌陷预测值((t/b)3)、叶片厚度、比叶质量显著正相关, 与导管直径、叶面积显著负相关, 不同树种的KleafP50与叶导管性状的关系大于叶形态性状。同一树种的关帝山到黑茶山P50变化量(δP50)与比叶质量和叶干物质含量在两地的变化量显著正相关, 同一树种δP50与叶形态性状变化量的关系大于与叶导管性状的。以上结果表明: 随着水分条件变差, 叶片水力效率降低, 水力安全性提高, 不同树种叶片水力效率与安全性之间存在一定的权衡关系, 不同树种叶水力性状的差别受叶导管性状影响的程度大于受叶形态性状的影响, 同一树种叶水力安全性对水分条件变化的响应主要依靠叶形态性状的驱动, 树木在提高自身叶水力安全的同时增加了叶构建的碳投资。  相似文献   

20.
罗艳  贡璐  朱美玲  安申群 《生态学报》2017,37(24):8326-8335
分析了塔里木河上游荒漠区灌木植物叶片和土壤碳(C)、氮(N)、磷(P)含量及其化学计量特征以及二者之间的相关性,旨在阐明荒漠植被在极端环境下养分循环及限制状况,为塔里木河上游荒漠生态系统的恢复与保护提供理论依据。以塔里木河上游多枝柽柳(Tamarix ramosissma)、盐穗木(Halostachys caspica)、黑果枸杞(Lycium ruthenicum)、铃铛刺(Halimodendron halodendron)4种荒漠灌木植物叶片和土壤为研究对象,分析植物叶片和土壤C、N、P生态化学计量特征及其相关性。结果表明:在4种不同荒漠灌木植物叶片中柽柳叶片的C含量为(484.77±59.74)mg/g,显著高于其他灌木植物(P0.05);铃铛刺的N含量是(14.20±1.58)mg/g,显著高于其他灌木植物(P0.05);柽柳叶片的P含量为(0.54±0.16)mg/g,显著低于其他灌木植物(P0.05)。4种灌木植物叶片C/N比值大小为黑果枸杞柽柳铃铛刺盐穗木,且黑果枸杞的C/N比值显著最高为(37.83±7.74)(P0.05);C/P为柽柳铃铛刺盐穗木黑果枸杞,盐穗木和黑果枸杞的C/P显著低于其他灌木(P0.05),其比值分别为(379.76±158.63)和(383.47±128.95);N/P为柽柳铃铛刺盐穗木黑果枸杞,柽柳的N/P比值显著最高为(22.34±4.60)(P0.05)。4种不同荒漠灌木土壤的有机碳(SOC)、全氮(TN)、全磷(TP)含量及其化学计量比特征均未表现出显著的差异。由相关性分析可知柽柳叶片仅P含量与土壤TP含量呈现出显著正相关(P0.05);铃铛刺叶片C含量与土壤TN、叶片P含量与土壤TN/TP均呈显著负相关(P0.05),而叶片C含量与土壤TN/TP呈极显著负相关(P0.01);盐穗木和黑果枸杞叶片化学计量特征与土壤的化学计量特征均未表现出显著相关性(P0.05)。说明植物叶片化学计量特征并非是由土壤养分含量特征直接决定的,更多受植物自身遗传特性的影响,体现了荒漠灌木植物对极端生境的适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号