首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study analyzes the effects of baclofen (BAC) on mice brain neurochemical alterations during the morphine (MOR) withdrawal syndrome. Male Swiss-Webster albino mice (27-33 g) were rendered dependent by intraperitoneal (i.p.) injection of MOR (2mg/kg), twice daily for 9 days. On day 10, the dependent animals were divided into two groups: one receiving naloxone (NAL; 6 mg/kg i.p.) to precipitate the withdrawal syndrome 60 min after the last dose of MOR and the other received BAC (2mg/kg, i.p.) followed by NAL (6 mg/kg, i.p.), injected 30 and 60 min after the last dose of MOR, respectively. Ten minutes after these treatments, mice were killed by decapitation and the striatum, cortex and hippocampus were dissected to determine endogenous concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites using HPLC with electrochemical detection. Striatal DA, dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) concentrations as well as cortical DA concentrations of the withdrawal groups decreased significantly with respect to the control groups. BAC attenuated the decrease in DA and DOPAC concentrations observed during the withdrawal, without modifying per se the control DA concentrations. No changes on 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) concentrations were observed during the MOR abstinence syndrome. The prevention caused by BAC on the decreased concentrations of DA induced by MOR withdrawal could have a therapeutic interest for the management of withdrawal syndrome.  相似文献   

2.
Acetate, the main end product of ethanol metabolism in the liver and a substrate of the cerebral small-pool Krebs-cycle, was tested for its ability to abate an ethanol withdrawal syndrome. Male Sprague-Dawley derived rats were rendered physically dependent on ethanol by intragastric administration of ethanol at a dosage of 9 to 15 grams per kilogram per day over a 4-day period. Oral administration of acetate was effective in abating the tremulous component of the ethanol withdrawal syndrome.  相似文献   

3.
Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.  相似文献   

4.
5.
R F Derr  M Derr 《Life sciences》1985,36(8):763-767
An ethanol withdrawal syndrome was elicited by withholding ethanol from physically dependent, male Sprague-Dawley rats. Ethanol dependence had been induced by intragastric administration of ethanol at a dosage of 9 to 15 grams per kilogram per day over a four-day period. Oral administration of 3-hydroxybutyrate, a compound which is elevated in blood of ethanol dependent rats and is a substrate of both the cerebral small-pool and large-pool Krebs-cycle, was effective in suppressing the tremulous component of the ethanol withdrawal syndrome. 3-Hydroxybutyrate did not function as a central nervous system depressant at the dose levels employed.  相似文献   

6.
The effect ofL-arginine, the precursor of nitric oxide, on ischemic dopamine release from the striatum was investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (2 h). Dopamine and its metabolites were measured in the striatal extracellular space dialysate after continuous perfusion (2 l/min) of artificial extracellular fluid in the presence or absence of 15 mmol/literL- orD-arginine or 1 mmol/liter nitro-L-arginine.L-Arginine but notD-arginine increased the striatal content of dopamine in pre- and postischemia whereas it lowered the levels of dopamine and 3-methoxytyramine induced by ischemia. In contrast, nitro-L-arginine reduced the preischemic levels of dopamine and 3,4-dihydroxyphenyl-acetic acid, and had no effect on the ischemic release of dopamine. These findings indicate thatL-arginine stereospecifically modified the ischemic release and metabolism of dopamine. The data also suggest that the basal level of nitric oxide is not involved in dopamine release during ischemia but may participate in regulating dopamine release under physiological conditions.Presented in part at the 19th International Joint Conference on Stroke and Cerebral Circulation, San Diego, California, February 17–19, 1994.  相似文献   

7.
《Neuron》2022,110(2):248-265.e9
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

8.
To determine the level of cerebral blood flow reduction which causes striatal dopamine release, extracellular dopamine and cerebral blood flow was simultaneously determined using in vivo brain dialysis and a hydrogen clearance method, respectively, in the striatum of spontaneously hypertensive rats, before and during experimental cerebral ischemia. The ischemic flow threshold for neurotransmitter dopamine release was found to be 20% of the resting value or 8–10 ml/100g/min of cerebral blood flow, being similar to those for energy and membrane failures.  相似文献   

9.
ATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H(2)O(2) produced from glutamate receptor activation inhibits dopamine release via K(ATP) channels. Sources of modulatory H(2)O(2) include striatal medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H(2)O(2)/K(ATP)-channel-mediated inhibition and assessed whether modulatory K(ATP) channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a K(ATP)-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H(2)O(2) levels, revealed a time window for inhibition of 500-1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 K(ATP)-channel subunits on dopaminergic axons. Consistent with the presence of functional K(ATP) channels on dopaminergic axons, K(ATP)-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express K(ATP) channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H(2)O(2) acting at K(ATP) channels on dopaminergic axons, including a role in paired-pulse suppression.  相似文献   

10.
The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using (11)C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The (11)C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that (11)C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition.  相似文献   

11.
12.
The central dopamine systems are involved in several aspects of normal brain function and are implicated in a number of human disorders. Hence, it is important to understand the mechanisms that control dopamine release in the brain. The striatum of the rat receives both dopaminergic and glutamatergic projections that synaptically target striatal neurons but not each other. Nevertheless, these afferents do form frequent appositional contacts, which has engendered interest in the question of whether they communicate with each other despite the absence of a direct synaptic connection. In this study, we used voltammetry in conjunction with carbon fiber microelectrodes in anesthetized rats to further examine the effect of the ionotropic glutamate antagonist, kynurenate, on extracellular dopamine levels in the striatum. Intrastriatal infusions of kynurenate decreased extracellular dopamine levels, suggesting that glutamate acts locally within the striatum via ionotropic receptors to regulate the basal extracellular dopamine concentration. Infusion of tetrodotoxin into the medial forebrain bundle or the striatum did not alter the voltammetric response to the intrastriatal kynurenate infusions, suggesting that glutamate receptors control a non-vesicular release process that contributes to the basal extracellular dopamine level. However, systemic administration of the dopamine uptake inhibitor, nomifensine (20 mg/kg i.p.), markedly decreased the amplitude of the response to kynurenate infusions, suggesting that the dopamine transporter mediates non-vesicular dopamine release. Collectively, these findings are consistent with the idea that endogenous glutamate acts locally within the striatum via ionotropic receptors to control a tonic, impulse-independent, transporter-mediated mode of dopamine release. Although numerous prior in vitro studies had suggested that such a process might exist, it has not previously been clearly demonstrated in an in vivo experiment.  相似文献   

13.
While there are currently no medications approved for methamphetamine (METH) addiction, it has been shown that propentofylline (PPF), an atypical methylxanthine, can suppress the rewarding effects of methamphetamine (METH) in mice. This experiment studied the interactions of PPF with METH in striatal dopaminergic transmission. Herein, the impact of PPF (10–40 mM, intrastriatally perfused (80 min) on the effect of METH (5 mg/kg, i.p.) on striatal dopamine (DA) release was evaluated using brain microdialysis in Sprague–Dawley adult rats. METH was injected at the 60 min time point of the 80 min PPF perfusion. The extracellular levels of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined using high performance liquid chromatography with electrochemical detection (HPLC-ED). PPF induced a concentration-dependent increase in DA release beginning 30 min after the onset of PPF perfusion. DA peak levels evoked by 40 mM PPF were similar to those induced by 5 mg/kg METH i.p. Only the highest concentration of PPF decreased the METH-induced DA peak (circa 70%). The significant decreases in extracellular levels of DOPAC and HVA evoked by METH were partially blocked by 10 and 20 mM PPF. Although 40 mM of PPF also partially blocked the METH-induced DOPAC decrease, it completely blocked HVA depletion after a transient increase in HVA levels in METH-treated rats. Data indicates for the first time that while PPF increases presynaptic striatal DA dynamics it attenuates METH-induced striatal DA release and metabolism.  相似文献   

14.
Rats given bilateral lesions of the medial hypothalamus, using either direct or radio frequency current, and killed 2 hours later showed a significant elevation in striatal concentration of homovanillic acid (HVA), while striatal dopamine (DA) was unaltered. After unilateral damage the elevated HVA was seen only in the hemisphere ipsilateral to the lesion. In rats killed 2 days after such damage, the striatal HVA did not differ from controls. The elevation of HVA, suggesting an enhanced release of striatal DA, is associated with a resistance to the cataleptic action of the DA receptor blocking agent droperidol. The present findings suggest that medial hypothalamic lesions can increase neurotransmission within brain DA neurons, and that this neurochemical event may account for at least some of the short-term behavioral effects of these lesions. The relationship of these brain events to the long-term behavioral effects of the lesion remains an important issue for future research.  相似文献   

15.
The effect of neurotensin (NT) on the release of endogenous dopamine (DA) of rat striatal synaptosomes was studied. In the basic medium with Ca++ (5mM K+ and 1.2 mM Ca++), spontaneous release of DA was determined to be 12.03 +/- 1.12 pmol/mg protein, while in the Ca++-free basic medium containing EGTA (2.0 mM), the amount of DA released was still up to 11.2 +/- 1.06 pmol/mg protein. NT in 10(-4)-10(-6) M range tested potentiated both the spontaneous and K+-induced release of DA in Ca++-free medium. In addition, NT in 10(-4) M, but not in lower concentrations tested, potentiated the spontaneous, Ca++-dependent release of DA. It is suggested that the effect of NT on DA release is mediated by the specific NT receptors at the DA axonal terminals. The possibility, however, that NT has some influence on the carrier-mediated process of the membrane might not be ruled out.  相似文献   

16.
Calcium channel antagonists decrease the ethanol withdrawal syndrome   总被引:13,自引:0,他引:13  
H J Little  S J Dolin  M J Halsey 《Life sciences》1986,39(22):2059-2065
Withdrawal from chronic ethanol intake results in a syndrome of tremor and hyperexcitability, which can progress to seizures and death. Drugs used therapeutically to alleviate the syndrome have sedative actions and dependence liability of their own. The basis of the syndrome is unclear, although ethanol affects many neuronal functions, including membrane calcium conductance. Calcium channel blocking drugs have been used in cardiovascular disorders; they bind to high affinity sites in the brain but have few overt actions on the central nervous system. We have tested the effects of four calcium channel antagonists on the ethanol withdrawal syndrome in rats. Nitrendipine and nimodipine abolished all spontaneous seizures and prevented or reduced seizures following an audiogenic stimulus, and mortality. Verapamil significantly decreased seizure incidence and both it and flunarizine lowered mortality. The dihydropyridines were considerably more effective than diazepam in the withdrawal syndrome but had little effect on pentylenetetrazol seizures, against which diazepam gave good protection. The calcium channel inhibitors showed no sedative activity in normal animals. The results provide evidence that alterations in calcium conductance may be involved in the ethanol withdrawal syndrome and offer possibilities for the development of non-sedative therapeutic treatment of this syndrome.  相似文献   

17.
R F Derr  K Draves  M Derr 《Life sciences》1983,32(22):2551-2554
Butyrate, lactate and beta-hydroxybutyrate, compounds which may be elevated in blood of ethanol dependent rats and substrates of the cerebral small-pool Krebs-cycle, were tested for their ability to suppress an ethanol withdrawal syndrome. Male Sprague-Dawley rats were rendered physically dependent on ethanol by intragastric administration of ethanol at a dosage of 9 to 15 grams per kilogram per day over a 4-day period. Oral administration of a mixture of butyrate, lactate and beta-hydroxybutyrate was effective in suppressing the tremulous component of the ethanol withdrawal syndrome.  相似文献   

18.
Methylmercury (MeHg) produces significant increases in the spontaneous output of dopamine (DA) from rat striatal tissue. The mechanism through MeHg produces such increase in the extracellular DA levels could be due to increased DA release or decreased DA uptake into DA terminals. One of the aims of this study was to investigate the role of DA transporter (DAT) in the MeHg-induced DA release. Coinfusion of 400 microM MeHg and nomifensine (50 microM) or amphetamine (50 microM) produced increases in the release of DA similar to those produced by nomifensine and amphetamine alone. In the same way, MeHg-induced DA release was not attenuated under Ca(2+)-free conditions or after pretreatment with reserpine (10 mg/kg i.p.) or tetrodotoxin (TTX), suggesting that the DA release was independent of calcium and vesicular stores, as well as it was not affected by the blockade of voltage sensitive sodium channels. Thus, to investigate whether depolarization of dopaminergic terminal was able to affect MeHg-induced DA release, we infused 75 mM KCl through the dialysis membrane. Our results clearly showed a decrease induced by MeHg in the KCl-evoked DA release. Taken together, these results suggest that MeHg induces release of DA via transporter-dependent, calcium- and vesicular-independent mechanism and it decreases the KCl-evoked DA release.  相似文献   

19.
In humans the release of growth hormone (GH) elicited by dopamine (DA) and DA agonists may represent a reliable model to assess change in sensitivity of DA receptors. We now report that in chronic alcoholics, 4–7 days after the suspension of alcohol consumption, the increase of GH response to DA infusion was higher than that seen in non alcoholic volunteers. The specificity of this GH response to DA administration was demonstrated by the use of domperidone, a novel peripheral antagonist of DA receptors. These results suggest the development of hyper-responsiveness of DA receptors involved in the control of GH secretion in chronic alcoholics during the later phases of the “withdrawal syndrome”.  相似文献   

20.
Incubation of rat striatal slices in the absence of oxygen (anoxia), glucose (aglycemia), or oxygen plus glucose (ischemia) caused significant increases in dopamine (DA) release. Whereas anoxia decreased extracellular 3,4-dihydroxyphenylacetic acid levels by 50%, aglycemia doubled it, and ischemia returned this aglycemia-induced enhancement to its control level. Although nomifensine, a DA uptake blocker, completely protected the slices against anoxia-induced DA depletion, aglycemia- and ischemia-induced increases were not altered. Moreover, hypothermia differentially affected DA release stimulated by anoxia, aglycemia, and ischemia. Involvement of glutamate in DA release induced by each experimental condition was tested by using MK-801 and also by comparing the glutamate-induced DA release with that during anoxia, aglycemia, or ischemia. MK-801 decreased the anoxia-induced DA depletion in a dose-dependent manner. This treatment, however, showed a partial protection in aglycemic conditions but failed to improve ischemia-induced DA depletion. Like anoxia, DA release induced by exogenous glutamate was also sensitive to nomifensine and hypothermia. These results indicate that anoxia enhances DA release by a mechanism involving both the reversed DA transporter and endogenous glutamate. Partial or complete lack of effect of nomifensine, hypothermia, or MK-801 in the absence of glucose or oxygen plus glucose also suggests that experimental conditions, such as the degree of anoxia/ischemia, may alter the mechanism(s) involved in DA depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号