首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is at present difficult to obtain a good phloxine-metbylene blue stain on formalin-fixed tissue. When phloxine has been used, it is washed out in the process of staining with methylene blue and differentiating with colophony (rosin). In the original technic of Mallory, Zenker's fixation is used. The tissue is first stained with a 2.5% aqueous solution of phloxine, then with a solution of 1% methylene blue plus 1% azure II and differentiated in colophony.1  相似文献   

2.
The applicability of Luxol fast blue MBS as a 0.1% solution in 0.05% acetic acid to the staining of mitochondria, first recognized in rat kidney by Shanklin and Nassar (Stain Techn., 34: 257-60. 1959), was confirmed in various organs (formalin-Zenker and Regaud's fixations; paraffin embedding) of the mouse and bullfrog. In liver cells and in the epithelium of renal tubules, mitochondria were stained green, selectively and clearly. The dark cells of the renal tubules and the middle piece of sperms in both animals were conspicuously demonstrated by their dense assemblages of green granules. The periodic acid-Schiff procedure proposed by Shanklin and Nassar as a counterstain was replaced by staining in 0.5% aqueous phloxine, 2-3 min; differentiation in 5% phosphotungstic acid, 2 min; and washing in water, 5 min. This simplified and accelerated the techique, and gave a better color contrast. Advantages of Luxol fast blue MBS and phloxine staining over traditional methods for mitochondria in paraffin sections are: durability of the stain, high specificity, simplicity of procedure, and constant result.  相似文献   

3.
More or less permanent mounts of fungi, algae, root tips, epidermis, germinating spores, and other small objects may be made readily by transferring the material to Amann's lacto-phenol containing anilin blue, W. S. or acid fuchsin, used singly or mixed. The addition of 20 to 25% of glacial acetic acid to these mixtures is frequently advantageous; or material may be stained with various dyes—acid fuchsin, anilin blue, W. S. (cotton blue), rose bengal, phloxine, hematoxylin—in aqueous solutions containing 5% of phenol, and then mounted in lacto-phenol, 50% glycerin or phenolglycerin, depending on the dye used. The phenol solutions of acid fuchsin and anilin blue are acidified with acetic acid and those of rose bengal and phloxine are made slightly alkaline with ammonium hydroxide. The addition of ferric chloride to acid fuchsin or acidified hematoxylin may improve staining. Fixation may be preferable but may be omitted, especially with fungi. Formulae for the mounting media and ten staining mixtures are given.  相似文献   

4.
A double stain with Magdala red and anilin blue has sometimes given very satisfactory results; but, just as often, has been entirely worthless. The reason for the discrepancy seems to be that stains sold under the name of Magdala red are of various composition, some of them containing no Magdala red at all. The standardized stain phloxine seems to be identical with successful lots of Magdala red and results are rather uniformly successful. Detailed directions for staining with phloxine and anilin blue will be published in a forthcoming number of Stain Technology.  相似文献   

5.
A double stain with Magdala red and anilin blue has sometimes given very satisfactory results; but, just as often, has been entirely worthless. The reason for the discrepancy seems to be that stains sold under the name of Magdala red are of various composition, some of them containing no Magdala red at all. The standardized stain phloxine seems to be identical with successful lots of Magdala red and results are rather uniformly successful. Detailed directions for staining with phloxine and anilin blue will be published in a forthcoming number of Stain Technology.  相似文献   

6.
Trypan blue has proved effective for demonstrating the presence of certain plant viruses within infected tissues. The amorphous and crystalline inclusions which constitute cytological evidence of viruses stain proportionately. The effects produced by different viruses react differently to the stain and those inclusions which do not absorb trypan blue tend to stain with phloxine. This selective staining is the basis for using trypan blue singly and in combination with phloxine as standardized procedures for demonstrating and differentiating cytological evidence of plant viruses. These tests are very rapid and are especially applicable to temporary mounts of living tissue but permanent mounts can be made from material fixed in formalin.  相似文献   

7.
Displacement.     
G Clark 《Stain technology》1979,54(3):111-119
Displacement is a noncommital term for the reactions that occur when slides previously stained in phloxine or rose Bengal are immersed for varying lengths of time in a solution of another dye in ethyl Cellosolve. In most histotechnic texts Lendrum's (1947) phloxine-tartrazine is given as the stain for acidophilic inclusion bodies. However the lack between the phloxine and tartrazine has been a serious limitation. A number of dyes were tried as possible substitutes for the tartrazine. A rose Bengal-Bismark brown Y procedure was developed which stains similarly to Lendrum's phloxine-tartrazine and which does have the needed contrast. After staining for 10 min in 1% aqueous rose Bengal and rinsing in isopropyl alcohol slides are placed for 20, 30, 40 and 50 min in 0.05% Bismark brown Y in ethyl Cellosolve. In various tissues and structures the rose Bengal is sequentially displaced by the Bismark brown Y. Thus collagen loses the red stain after 30 min while acedophilic structures like sperm heads and Paneth cell granules retain the red stain after 50 min in the displacement solution. The results are strikingly similar to staining with alkaline Biebrich scarlet.  相似文献   

8.
Displacement     
Displacement is a noncommital term for the reactions that occur when slides previously stained in phloxine or rose Bengal are immersed for varying lengths of time in a solution of another dye in ethyl Cellosolve. In most histotechnic tests Lendrum's (1947) phloxine-tartrazine is given as the stain for acidophilic inclusion bodies. However the lack of contrast between the phloxine and tartrazine has been a serious limitation. A number of dyes were tried as possible substitutes for the tartrazine. A rose Bengal-Bismark brown Y procedure was developed which stains similarly to Lendrum's phloxine-tartrazine and which doer have the needed contrast. After staining for 10 min in 1% aqueous rose Bengal and rinsing in isopropyl alcohol slides are placed for 20, 30, 40 and 50 min in 0.05% Bismark brown Y in ethyl Cellosolve. In various tissues and structures the rose Bengal is sequentially displaced by the Bismark brown Y. Thus collagen loses the red stain after 30 min while acidophilic structures like sperm heads and Paneth cell granules retain the red stain after 50 min in the displacement solution. The results are strikingly similar to staining with alkaline Biebrich scarlet.  相似文献   

9.
A modified tannic acid-phosphomolybdic acid-dye procedure is used for staining myoepithelial cells in formalin fixed surgical and autopsy material. Paraffin sections are brought to water, mordanted for 1 hr in Bouin's fixative previously heated to 56 C, cooled while still in Bouin's, rinsed in tap water until sections are colorless, rinsed in distilled water, treated with 5% aqueous tannic acid 5-20 min, rinsed in distilled water 30 sec or less, treated with 1% aqueous phosphomolybdic acid 10-15 min, rinsed 30 sec in distilled water, rinsed in methanol, stained 1 hr in a saturated solution of amido black or phloxine B in 9:1 methanol:acetic acid, rinsed in 9:1 methanol:acetic acid, dehydrated, cleared and mounted. Myoepithelial cells of sweat, lacrimal, salivary, bronchial, and mammary glands are blue-green with amido black or pink with phloxine B. Fine processes of myoepithelial cells are well delineated. Background staining is minimal and the procedure is highly reproducible.  相似文献   

10.
A modified tannic acid-phosphomolybdic acid-dye procedure is used for staining myoepithelial cells in formalin fixed surgical and autopsy material. Paraffin section are brought to water, mordanted for 1 hr in Bouin's fixative previously heated to 56 C, cooled while still in Bouin's, rinsed in tap water until sections are colorless, rinsed in distilled water, treated with 5% aqueous tannic acid 5-20 min, rinsed in distilled water 30 sec or less, treated with 1% aqueous phosphomolybdic acid 10-15 min, rinsed 30 sec in distilled water, rinsed in methanol, stained 1 hr in a saturated solution of amido black or phloxine B in 9:l methanol:acetic acid, rinsed in 9:l methanol:acetic acid, dehydrated, cleared and mounted. Myoepithelial cells of sweat, lacrimal, salivary, bronchial, and mammary glands are blue-green with amido black or pink with phloxine B. Fine processes of myoepithelial cells are well delineated. Background staining is minimal and the procedure is highly reproducible.  相似文献   

11.
This is a modification of Kreyberg's stain with Alcian blue 8GS used to stain acid much while phloxine B and orange G stain keratin and prekeratin. Procedure: Dewax formalin-fixed paraffin sections in xylene and hydrate through alcohol. Stain in Mayer's haemalum, 10 min; blue in tap water; wash in distilled water; stain in 1% phloxine, 3 min; wash in running water, 1 min; wash in distilled water; stain in 0.5% aqueous Alcian blue in 0.5 acetic acid, 5 min; wash in distilled water; stain in 0.5% orange G dissolved in 2.0% phosphotungstic acid, 13 min; dehydrate quickly in 2 changes of 95% alcohol and 2 changes of absolute alcohol; clear in several changes of xylene; mount in a synthetic resin. Acid mucopolysaccharides are stained turquois blue; prekeratin and keratin are orange to red orange.  相似文献   

12.
Various acid dyes prove satisfactory for the routine staining of bacteria. Those used are acid fuchsin, anilin blue w. s., fast acid blue R, fast green FCF, light green, orseilline BB, erythrosin, phloxine and rose bengal. Acid fuchsin, fast green, anilin blue, and orseilline are especially recommended. Phenolic solutions of the dyes, acidified with acetic acid, with the addition of ferric chloride to those containing acid fuchsin, anilin blue, fast green or light green, are used. Procedures are given in detail for staining or demonstrating vegetative cells, resting and germinating spores, capsules, sheaths and glycogen in bacteria; germinating and conjugating spores of yeast; and for counterstaining after acid fast or Gram staining. The principal advantages of using acid dyes are better differentiation, and less tendency for slime amd debris to take the dye.  相似文献   

13.
Sections of 6 μ from tissues fixed in Susa or in Bouin's fluid (without acetic acid) and embedded in paraffin were attached to slides with Mayer's albumen, dried at 37 C for 12 hr, deparaffinized and hydrated. The sections fixed in Susa were transferred to a I2-K1 solution (1:2:300 ml of water); rinsed in water, decolorized in 5% Na2S2O3; washed in running water, and rinsed in distilled water. Those fixed in Bouin's were transferred to 80% alcohol until decolorized, then rinsed in distilled water. All sections were stained in 1% aqueous phloxine, 10 min; rinsed in distilled water and transferred to 3% aqueous phosphotungstic acid, 1 min; rinsed in distilled water; stained 0.5 min in 0.05 azure II (Merck), washed in water; and finally, nuclear staining in Weigert's hematoxylin for 1 min was followed by a rinse in distilled water, rapid dehydration through alcohols, clearing in xylene and covering in balsam or a synthetic resin. In the completed stain, islet cells appear as follows: A cells, purple; B cells, weakly violet-blue; D cells, light blue with evident granules; exocrine cells, grayish blue with red granules.  相似文献   

14.
For differentiation of cells of the adenohypophysis, the Niagara blue 4B method requires no special preliminary fixative nor very fresh tissue, and requires no more time than routine hematoxylin-eosin (H-E) staining. The method requires fixation in 10% formalin. After processing to paraffin wax, deparaffinise and hydrate the sections and stain in 1% aqueous Niagara blue 4B solution for 2 min. Stain afterwards with hematoxylin for 1 min then differentiate, wash, dehydrate, clear and mount. This method can be used also for staining old HE slides by removing the covers, applying the Niagara blue 4B and restaining with eosin. The Niagara blue 4B combined with H-E gives the best and most colorful result. This method allows special staining of the adenohypophysis from human post-mortem material to become routine.  相似文献   

15.
The writers discuss a series of investigations as to the behavior of certain fluorescein dyes (eosin, erythrosin, phloxine, and rose bengal) in staining bacteria in dried films of soil. These dyes are ordinarily purchased in the form of di-sodium salts and are indifferent staining agents for the purpose named. If there be added to the dye solution a small amount (0.001 to 0.1%) of a mineral salt of calcium, aluminium, magnesium or lead, the intensity of staining is greatly increased. The effect of such addition is to convert the dye partly into a salt of the metal added, which in nearly every instance is relatively insoluble and is in every case less soluble than the di-sodium salt. It is shown that practically identical results can be obtained if the staining be performed with a suspension of the calcium, aluminium or lead salt of one of these dyes, altho very little of the dye goes into solution.

Theories to account for the phenomenon are discussed, including in particular the solution and adsorption theories of staining. The evidence seems to favor the former, altho not entirely disproving the latter.  相似文献   

16.
The writers discuss a series of investigations as to the behavior of certain fluorescein dyes (eosin, erythrosin, phloxine, and rose bengal) in staining bacteria in dried films of soil. These dyes are ordinarily purchased in the form of di-sodium salts and are indifferent staining agents for the purpose named. If there be added to the dye solution a small amount (0.001 to 0.1%) of a mineral salt of calcium, aluminium, magnesium or lead, the intensity of staining is greatly increased. The effect of such addition is to convert the dye partly into a salt of the metal added, which in nearly every instance is relatively insoluble and is in every case less soluble than the di-sodium salt. It is shown that practically identical results can be obtained if the staining be performed with a suspension of the calcium, aluminium or lead salt of one of these dyes, altho very little of the dye goes into solution.

Theories to account for the phenomenon are discussed, including in particular the solution and adsorption theories of staining. The evidence seems to favor the former, altho not entirely disproving the latter.  相似文献   

17.
This technic has been successfully employed by the author for staining, in toto, the bones and cartilage of mature specimens of Urodela and the developing bone and cartilage of the embryonic human, cat, pig and rat. The differential staining is accomplished by using a modification of Dawson's method of staining bone with alizarin red S following a toluidine blue solution specific for cartilage. Specimens are fixed in 10% formalin, stained one week in a solution of .25 g. of toluidine blue in 100 cc. of 70% alcohol, macerated 5 to 7 days in a 2% KOH solution, counterstained for 24 hours in a 0.001% solution of alizarin red S in 2% aqueous KOH, dehydrated in cellosolve and cleared in methyl salicylate. In the adult and embryonic forms thus treated the soft tissues are cleared while the osseous tissue is stained red, the cartilage blue.  相似文献   

18.
A staining schedule employing phloxine as a counter-stain to Erlich's acid hematoxylin is presented. Fixation is best with Zenker's fluid, although formalin can be used. The technic is similar to the standard hematoxylin-eosin formulae but because of the staining advantages of phloxine over eosin, the technic is simpler, and quicker, resulting in clearly differentiated sections which do not fade as soon as do eosin-stained slides. A brief summary of the uses of phloxine as a biological stain is given and its advantages over eosin are discussed.  相似文献   

19.
Albert's method, of staining diphtheria cultures consists of staining a fixed smear for one minute (some laboratories stain for five minutes) with a solution containing toluidine blue and malachite (or methyl) green, washing with water, and applying Albert's iodine for one minute. This procedure is discussed and criticized, and in addition the mechanism of the stain is elucidated. Also, the procedure which involves staining a fixed smear for one minute with Loeffler's alkaline methylene blue solution is discussed and criticized.

To overcome the objections to the above staining methods, a different method is proposed. This consists of staining a fixed smear with an acid solution of toluidine blue, washing with water, applying Albert's iodine for one minute, washing with water, and finally applying a safranin solution for 15-20 seconds. The theoretical basis for this method is presented.  相似文献   

20.
When acetic acid-urea polyacrylamide gels with or without Triton X-100 were immersed in 0.1 M Na picrate, pH 7, to which 1/4 vol Coomassie blue staining solution (0.2% in 45% methanol, 10% acetic acid, 45% water) was added, proteins stained rapidly (within a few minutes in gels without Triton and within an hour in gels with Triton) with little or no background staining. Thus protein bands could be observed in a single step with no destaining. The picrate-Coomassie blue method fixed and stained a small peptide (bradykinin, nine amino acids) that was not observed in gels stained with fast green, silver, or Coomassie blue following fixation in 50% trichloroacetic acid. The picrate-Coomassie blue method gave high-contrast bands suitable for densitometry. Gels containing sodium dodecyl sulfate were also stained by the picrate-Coomassie blue method if they were first washed briefly (1 h) in 45% methanol, 10% acetic acid, 45% water, presumably to remove the detergent. These gels also stained rapidly with almost no background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号