首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Kadar  C David    A L Haenni 《Journal of virology》1996,70(11):8169-8174
The 206-kDa protein of turnip yellow mosaic virus belongs to an expanding group of proteins containing a domain which includes the consensus nucleotide binding site GxxxxGKS/T. A portion of this protein (amino acids [aa] 916 to 1259) was expressed in Escherichia coli and purified by affinity chromatography to near homogeneity. In the absence of any other viral factors, it exhibited ATPase and GTPase activities in vitro. A mutant protein with a single amino acid substitution in the consensus nucleotide binding site (Lys-982 to Ser) exhibited only low levels of both activities, implying that Lys-982 is important for nucleoside triphosphatase activity. The protein also possessed nonspecific RNA binding capacity. Deletion mutants revealed that an N-terminal domain (aa 916 to 1061) and a C-terminal domain (aa 1182 to 1259) participate in RNA binding. The results presented here provide the first experimental evidence that turnip yellow mosaic virus encodes nucleoside triphosphatase and RNA binding activities.  相似文献   

2.
The influence of nucleoside triphosphates in relation to divalent cations on RNA synthesis of cells from a suspension culture from parsley was investigated. The data obtained from experiments with isolated nuclei and with an in vitro system with highly purified RNA polymerase I were compared with a chromatin-bound nucleoside triphosphatase activity within the nucleus. The results might suggest a regulatory role of the nucleoside triphosphatase activity in RNA synthesis.Abbreviations NTP nucleoside triphosphates - NTPase nucleoside triphosphatase  相似文献   

3.
4.
A previously identified nucleoside triphosphatase activity in mammalian reovirus cores was further characterized by comparing two reovirus strains whose cores differ in their efficiencies of ATP hydrolysis. In assays using a panel of reassortant viruses derived from these strains, the difference in ATPase activity at standard conditions was genetically associated with viral genome segment L3, encoding protein lambda1, a major constituent of the core shell that possesses sequence motifs characteristic of other ATPases. The ATPase activity of cores was affected by several other reaction components, including temperature, pH, nature and concentration of monovalent and divalent cations, and nature and concentration of anions. A strain difference in the response of core ATPase activity to monovalent acetate salts was also mapped to L3/lambda1 by using reassortant viruses. Experiments with different nucleoside triphosphates demonstrated that ATP is the preferred ribonucleotide substrate for cores of both strains. Other experiments suggested that the ATPase is latent in reovirus virions and infectious subviral particles but undergoes activation during production of cores in close association with the protease-mediated degradation of outer-capsid protein mu1 and its cleavage products, suggesting that mu1 may play a role in regulating the ATPase.  相似文献   

5.
Both genomic and subgenomic RNAs of the Alphavirus have m(7)G(5')ppp(5')N (cap0 structure) at their 5' end. Previously it has been shown that Alphavirus-specific nonstructural protein Nsp1 has guanine-7N-methyltransferase and guanylyltransferase activities needed in the synthesis of the cap structure. During normal cap synthesis the 5' gamma-phosphate of the nascent viral RNA chain is removed by a specific RNA 5'-triphosphatase before condensation with GMP, delivered by the guanylyltransferase. Using a novel RNA triphosphatase assay, we show here that nonstructural protein Nsp2 (799 amino acids) of Semliki Forest virus specifically cleaves the gamma,beta-triphosphate bond at the 5' end of RNA. The same activity was demonstrated for Nsp2 of Sindbis virus, as well as for the amino-terminal fragment of Semliki Forest virus Nsp2-N (residues 1-470). The carboxyl-terminal part of Semliki Forest virus Nsp2-C (residues 471-799) had no RNA triphosphatase activity. Replacement of Lys-192 by Asn in the nucleotide-binding site completely abolished RNA triphosphatase and nucleoside triphosphatase activities of Semliki Forest virus Nsp2 and Nsp2-N. Here we provide biochemical characterization of the newly found function of Nsp2 and discuss the unique properties of the entire Alphavirus-capping apparatus.  相似文献   

6.
7.
8.
The rotavirus nonstructural protein NSP2 self-assembles into homomultimers, binds single-stranded RNA nonspecifically, possesses a Mg2+-dependent nucleoside triphosphatase (NTPase) activity, and is a component of replication intermediates. Because these properties are characteristics of known viral helicases, we examined the possibility that this was also an activity of NSP2 by using a strand displacement assay and purified bacterially expressed protein. The results revealed that, under saturating concentrations, NSP2 disrupted both DNA-RNA and RNA-RNA duplexes; hence, the protein possesses helix-destabilizing activity. However, unlike typical helicases, NSP2 required neither a divalent cation nor a nucleotide energy source for helix destabilization. Further characterization showed that NSP2 displayed no polarity in destabilizing a partial duplex. In addition, helix destabilization by NSP2 was found to proceed cooperatively and rapidly. The presence of Mg2+ and other divalent cations inhibited by approximately one-half the activity of NSP2, probably due to the increased stability of the duplex substrate brought on by the cations. In contrast, under conditions where NSP2 functions as an NTPase, its helix-destabilizing activity was less sensitive to the presence of Mg2+, suggesting that in the cellular environment the two activities associated with the protein, helix destabilization and NTPase, may function together. Although distinct from typical helicases, the helix-destabilizing activity of NSP2 is quite similar to that of the sigmaNS protein of reovirus and to the single-stranded DNA-binding proteins (SSBs) involved in double-stranded DNA replication. The presence of SSB-like nonstructural proteins in two members of the family Reoviridae suggests a common mechanism of unwinding viral mRNA prior to packaging and subsequent minus-strand RNA synthesis.  相似文献   

9.
The nonstructural protein NSP2 is a component of rotavirus replication intermediates and accumulates in cytoplasmic inclusions (viroplasms), sites of genome RNA replication and the assembly of subviral particles. To better understand the structure and function of the protein, C-terminally His-tagged NSP2 was expressed in bacteria and purified to homogeneity. In its purified form, the protein did not exist as a monomer but rather was present as an 8S-10S homomultimer consisting of 6 +/- 2 subunits of recombinant NSP2 (rNSP2). As shown by gel mobility shift assays, the rNSP2 multimers bound to RNA in discrete cooperative steps to form higher-order RNA-protein complexes. The RNA-binding activity of the rNSP2 multimers was determined to be nonspecific and to have a strong preference for single-stranded RNA over double-stranded RNA, for which it displayed little affinity. Enzymatic analysis revealed that rNSP2 possessed an associated nucleoside triphosphatase (NTPase) activity in vitro, which in the presence of Mg(2+) catalyzed the hydrolysis of each of the four NTPs to NDPs with equal efficiency. Evidence indicating that the hydrolysis of NTP resulted in the covalent linkage of the gamma-phosphate to rNSP2 was obtained. Additional experiments showed that NSP2 expressed transiently in MA014 cells is phosphorylated. We propose that NSP2 functions as a molecular motor, catalyzing the packaging of viral mRNA into core-like replication intermediates through the energy derived from its NTPase activity.  相似文献   

10.
C D Morrow  G F Gibbons  A Dasgupta 《Cell》1985,40(4):913-921
The HeLa cell protein (host factor) required for in vitro replication of poliovirus has been identified as a 67,000 dalton phosphoprotein. The purified protein displays three activities in vitro: stimulation of poliovirus RNA synthesis in the presence of poliovirus replicase, apparent self-phosphorylation, and phosphorylation of the alpha-subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). All three activities can be removed or inhibited by an antibody to host factor. Partially purified preparations of reticulocyte eIF-2 contain a similar phosphoprotein and display host factor activity in the viral RNA synthesis assay in vitro. In vitro phosphorylation of the 67 kd protein can be stimulated by low concentrations of double-stranded RNA. Addition of phosphorylated host factor in an in vitro RNA synthesis assay significantly changes the kinetics of viral RNA synthesis, indicating that protein phosphorylation may play an important role in viral RNA replication.  相似文献   

11.
12.
The highly conserved non-structural protein 2C of picornaviruses is involved in viral genome replication and encapsidation and in the rearrangement of intracellular structures. 2C binds RNA, has nucleoside triphosphatase activity, and shares three motifs with superfamily III helicases. Motifs "A" and "B" are involved in nucleotide triphosphate (NTP) binding and hydrolysis, whereas a function for motif "C" has not yet been demonstrated. Poliovirus RNA replication is inhibited by millimolar concentrations of guanidine hydrochloride (GdnHCl). Resistance and dependence to GdnHCl map to 2C. To characterize the nucleoside triphosphatase activity of 2C, we purified poliovirus recombinant 2C fused to glutathione S-transferase (GST-2C) from Escherichia coli. GST-2C hydrolyzed ATP with a Km of 0.7 mM. Other NTPs, including GTP, competed with ATP for binding to 2C but were poor substrates for hydrolysis. Mutation of conserved residues in motif A and B abolished ATPase activity, as did mutation of the conserved asparagine residue in motif C, an observation indicating the involvement of this motif in ATP hydrolysis. GdnHCl at millimolar concentrations inhibited ATP hydrolysis. Mutations in 2C that confer poliovirus resistant to or dependent on GdnHCl increased the tolerance to GdnHCl up to 100-fold.  相似文献   

13.
14.
15.
The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) possesses protease, nucleoside triphosphatase, and helicase activities. Although the enzymatic activities have been extensively studied, the ATP- and RNA-binding domains of the NS3 helicase are not well-characterized. In this study, NS3 proteins with point mutations in the conserved helicase motifs were expressed in Escherichia coli, purified, and analyzed for their effects on ATP binding, RNA binding, ATP hydrolysis, and RNA unwinding. UV cross-linking experiments indicate that the lysine residue in the AX(4)GKS motif is directly involved in ATP binding, whereas the NS3(GR1490DT) mutant in which the arginine-rich motif (1486-QRRGRTGR-1493) was changed to QRRDTTGR bound ATP as well as the wild type. The binding activity of HCV NS3 helicase to the viral RNA was drastically reduced with the mutation at Arg1488 (R1488A) and was also affected by the K1236E substitution in the AX(4)GKS motif and the R1490A and GR1490DT mutations in the arginine-rich motif. Previously, Arg1490 was suggested, based on the crystal structure of an NS3-deoxyuridine octamer complex, to directly interact with the gamma-phosphate group of ATP. Nevertheless, our functional analysis demonstrated the critical roles of Arg1490 in binding to the viral RNA, ATP hydrolysis, and RNA unwinding, but not in ATP binding.  相似文献   

16.
Mammalian reoviruses are thought to assemble and replicate within cytoplasmic, nonmembranous structures called viral factories. The viral nonstructural protein mu NS forms factory-like globular inclusions when expressed in the absence of other viral proteins and binds to the surfaces of the viral core particles in vitro. Given these previous observations, we hypothesized that one or more of the core surface proteins may be recruited to viral factories through specific associations with mu NS. We found that all three of these proteins--lambda 1, lambda 2, and sigma 2--localized to factories in infected cells but were diffusely distributed through the cytoplasm and nucleus when each was separately expressed in the absence of other viral proteins. When separately coexpressed with mu NS, on the other hand, each core surface protein colocalized with mu NS in globular inclusions, supporting the initial hypothesis. We also found that lambda 1, lambda 2, and sigma 2 each localized to filamentous inclusions formed upon the coexpression of mu NS and mu 2, a structurally minor core protein that associates with microtubules. The first 40 residues of mu NS, which are required for association with mu 2 and the RNA-binding nonstructural protein sigma NS, were not required for association with any of the three core surface proteins. When coexpressed with mu 2 in the absence of mu NS, each of the core surface proteins was diffusely distributed and displayed only sporadic, weak associations with mu 2 on filaments. Many of the core particles that entered the cytoplasm of cycloheximide-treated cells following entry and partial uncoating were recruited to inclusions of mu NS that had been preformed in those cells, providing evidence that mu NS can bind to the surfaces of cores in vivo. These findings expand a model for how viral and cellular components are recruited to the viral factories in infected cells and provide further evidence for the central but distinct roles of viral proteins mu NS and mu 2 in this process.  相似文献   

17.
Pestivirus NS3 (p80) protein possesses RNA helicase activity.   总被引:28,自引:16,他引:12       下载免费PDF全文
The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.  相似文献   

18.
19.
C C Kao  P Ahlquist 《Journal of virology》1992,66(12):7293-7302
Brome mosaic virus is a positive-strand RNA virus whose RNA replication requires viral protein 1a, which has putative helicase and capping functions, and 2a, which has putative polymerase function. Since domains of related sequence are conserved in a wide range of plus-strand RNA viruses, analysis of 1a and 2a function should have applicability to many other viruses. We have recently demonstrated that 1a and 2a form a complex in vivo and in vitro. Using immune coprecipitation and mutant polypeptides made in reticulocyte lysates, we have now mapped both the 1a and 2a domains necessary for complex formation. The sequences needed to bind 2a map to the carboxy-terminal helicase-like domain of 1a. Truncated polypeptides containing this domain were able to bind to 2a, while several small insertions in the helicase-like domain disrupted binding. The sequence required for binding 1a lies within a 115-residue subset of the 2a N-terminal segment preceding the polymerase-like domain. Truncations or fusion polypeptides containing this segment can bind 1a. We also determined that highly purified 2a protein made in insect cells can form a complex with highly purified 1a helicase-like domain made in Escherichia coli, suggesting that no other factor is required to mediate 1a-2a interaction. Previous genetic analyses of 1a and 2a are consistent with this mapping and show that the newly defined 1a and 2a binding regions are required for RNA synthesis. The locations of these interacting regions are discussed with regard to models of viral replication and the evolution of positive-strand RNA virus genomes.  相似文献   

20.
Phosphoprotein NSP5 is a component of replication intermediates that catalyze the synthesis of the segmented double-stranded RNA (dsRNA) rotavirus genome. To study the role of the protein in viral replication, His-tagged NSP5 was expressed in bacteria and purified by affinity chromatography. In vitro phosphorylation assays showed that NSP5 alone contains minimal autokinase activity but undergoes hyperphosphorylation when combined with the NTPase and helix-destabilizing protein NSP2. Hence, NSP2 mediates the hyperphosphorylation of NSP5 in the absence of other viral or cellular proteins. RNA-binding assays demonstrated that NSP5 has unique nonspecific RNA-binding activity, recognizing single-stranded RNA and dsRNA with similar affinities. The possible functions of the RNA-binding activities of NSP5 are to cooperate with NSP2 in the destabilization of RNA secondary structures and in the packaging of RNA and/or to prevent the interferon-induced dsRNA-dependent activation of the protein kinase PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号