首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of insulin-like growth factor-1 (IGF-1) on the behavior of rabbit chondrocytes in cultured collagen (CL) gels initially seeded with 2 × 105 cells/ml was examined. On day 5, the frequency of migrating cells cultured in presence of 100 ng IGF-1/ml was 0.04, which was 54 % of the frequency in IGF-1-free culture. The presence of IGF-1 caused an increase in the frequency of dividing cells from 0.09 to 0.13. These results suggest that IGF-1 suppressed the migration of chondrocytes in the CL gels while stimulating cell division in the initial culture phase. The proteolytic migration of cells was thought to be suppressed by the down-regulation of membrane type 1 matrix metalloproteinase by IGF-1. This contributed to the formation of aggregates with spherical-shaped cells that produced collagen type II.  相似文献   

2.
Abstract

The objective of this study was to explore morphological alterations of rumen papillae induced by n-butyric acid in relation to the insulin-like growth factor (IGF) system in adult castrated bulls. Three animals fitted with rumen cannula were fed twice daily at a low and high nutritional level (LL and HL), i.e., at 1.1 × maintenance (M) and 1.6 × M, respectively. Diets contained artificial dried grass and concentrate (74:26 and 52:48). Bulls received no (B0) or daily intraruminal infusions of 500 g n-butyric acid (B500) over 14 d. The infusion started 1 h after the morning feeding (9:00) and lasted for 3.5 h. Thus, four treatments (B0LL, B500LL, B0HL, and B500HL) were compared. Blood and rumen mucosa samples from the atrium ruminis were taken at the last day of each period. Length, width and surface of rumen papillae were greater (p < 0.001) in B0HL than in B0LL. Treatment with n-butyric acid resulted in an increase of the papillae surface of 20 – 40% (p = 0.047) for both nutritional levels as compared to periods without n-butyric acid treatments. The higher nutritional level and intraruminal n-butyric acid infusion induced epithelial cell death. The percentage of proliferative cells was doubled by n-butyric acid treatment. The mRNA of IGF-1 and IGF type 1 receptor (IGF-1R), as well as IGF-1R binding capacity were unaffected by butyric acid treatments. The abundance of IGF-1 mRNA tended to be lower (p = 0.1) and IGF-1R abundance was lower (p = 0.03) in response to the HL. The plasma IGF-1 concentration was lower with butyric acid treatment (p < 0.01), but was unaffected by the nutritional level. In conclusion, under described experimental preconditions of daily short-time intraruminal n-butyric acid infusion alterations of rumen papillae morphology is not mediated by ruminal IGF type 1 receptor and by local IGF-1 expression in papillae in castrated bulls.  相似文献   

3.
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.  相似文献   

4.
Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii   总被引:1,自引:0,他引:1  
In this study, mature zygotic embryos, plant growth regulators, and various media were tested with the aim of developing an efficient regeneration system for plantlets of the bamboo species Dendrocalamus hamiltonii. Callus formation was induced in explants cultured in Murashige and Skoog (MS) medium supplemented with 1.0–3.0 mg/l 2,4-dichlorophenoxyacetic acid. Optimal shoot differentiation and subsequent shoot growth were also obtained in MS medium supplemented with 2 mg/l benzyladenine, 1 mg/l kinetin, and 1 mg/l naphthaleneacetic acid. Root induction was enhanced by the addition of 5 mg/l indole-3-butyric acid to the culture medium. Histological analysis revealed that both somatic embryogenesis and organogenesis were induced during callus initiation, shoot differentiation, and the development of plantlets from the mature zygotic embryos. Our data provide a useful basis for developing culture protocols for the regeneration of bamboo plants.  相似文献   

5.
The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.  相似文献   

6.
Morphogenic responses of two accessions of African yam bean to different concentrations of plant growth regulator supplements to Murashige and Skoog basal medium was investigated to develop a more efficient regeneration system. Mature embryo explants were cultured on growth regulator-free and BAP + NAA supplemented media. Nodal cuttings excised from 4-week old shoots of the regenerated embryos were cultured on media containing varying concentrations and combinations of 6-benzyl aminopurine (BAP), kinetin and α-naphthalene acetic acid (NAA). Growth regulator-free medium favored embryo regeneration and growth over supplemented media and both enhanced shoot regeneration and rooting, but could not induce multiple shoot formation on embryo explants. Multiple shoots were produced by nodal explants and the highest average number of shoots (5.3 ± 2.3), leaves (7.7 ± 3.6), roots (3.7 ± 2.9) and root length (3.1 ± 0.0 cm) were obtained on a medium with 0.6 mg l?1 BAP + 0.03 mg l?1 NAA for accession TSs154, while in TSs5, highest number of shoots (3.2 ± 2.5) and leaves (5.9 ± 1.5) were induced by 2.0 mg l?1 Kinetin + 0.05 mg l?1 NAA. Such differential morphogenic responses to culture media underline the genotypic control of in vitro propagation of this crop. Embryo and nodal explants rooted directly on shoot regeneration media, and regenerated plantlets were successfully acclimatized. The efficient regeneration system obtained will enhance genetic improvement of African yam bean by facilitating molecular genetic transformation for advanced breeding.  相似文献   

7.
Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 μg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01).  相似文献   

8.
IGF-1 plays a key role in development, growth, and metabolism in teleost. Recombinant fish IGF-1 may be a useful tool for both theoretical research and aquaculture applications. However, using the Escherichia coli expression system has several drawbacks for producing quality fish IGF-1 protein. To explore the yeast expression system for generating fish IGF-1 protein, the cDNA coding for the mature orange-spotted grouper IGF-1 peptide without signal peptide and E domain was cloned into the secreting expression organism Pichia pastoris. Tricine-SDS-PAGE and western blotting analysis of culture medium from methanol-induced expression yeast clones demonstrated that the rgIGF-1 was secreted into the culture medium, had a molecular weight of 8.7 kDa. The production peaked at 24h of induction and the optimal pH for expression was 5.0. The recombinant protein was purified using a combined ammonium sulfate precipitation with Ni(2+) affinity chromatography. Finally, 17.9 mg of the protein was obtained from 420 ml of the culture supernatant and the purity was about 92.4%. Bioactivity of the rgIGF-1 was confirmed by the ability to stimulate proliferation of embryo cell line of grouper (GP cell line) and MFC-7 cell. The present results suggest that the Pichia pastoris expression system can be used to produce a functional rgIGF-1 for both research and aquaculture application.  相似文献   

9.
A protocol has been standardized for establishment and characterization of cell suspension cultures of Stevia rebaudiana in shake flasks, as a strategy to obtain an in vitro stevioside producing cell line. The effect of growth regulators, inoculum density and various concentrations of macro salts have been analyzed, to optimize the biomass growth. Dynamics of stevioside production has been investigated with culture growth in liquid suspensions. The callus used for this purpose was obtained from leaves of 15-day-old in vitro propagated plantlets, on MS medium fortified with benzyl aminopurine (8.9 μM) and naphthalene acetic acid (10.7 μM). The optimal conditions for biomass growth in suspension cultures were found to be 10 g l?1 of inoculum density on fresh weight basis in full strength MS liquid basal medium of initial pH 5.8, augmented with 2,4-dichlorophenoxy acetic acid (0.27 μM), benzyl aminopurine (0.27 μM) and ascorbic acid (0.06 μM), 1.0× NH4NO3 (24.7 mM), 3.0× KNO3 (56.4 mM), 3.0× MgSO4 (4.5 mM) and 3.0× KH2PO4 (3.75 mM), in 150 ml Erlenmeyer flask with 50 ml media and incubated in dark at 110 rpm. The growth kinetics of the cell suspension culture has shown a maximum specific cell growth rate of 3.26 day?1, doubling time of 26.35 h and cell viability of 75 %, respectively. Stevioside content in cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The results of present study are useful to scale-up process and augment the S. rebaudiana biological research.  相似文献   

10.
We developed an efficient culture system for producing cotyledonary embryos from isolated microspores of hot pepper (Capsicum annuum L.) and analyzed the ploidy levels of regenerated plants. Three culture protocols were studied: liquid, double-layer, and two-step culture. In the double-layer culture, cotyledonary embryos were produced more efficiently when the same medium composition was used for the liquid upper-layer and the solid under-layer. The two-step culture system, in which microspores were first incubated on liquid medium and then subcultured on double-layer medium, was most effective for producing cotyledonary embryos. Cotyledonary embryos were produced more efficiently when the isolated microspores were cultured in liquid medium for 1 week in 60 × 15-mm plates at a density of 8–10 × 104/mL and microspore suspensions from two liquid culture plates were combined into a single 100 × 20-mm plate containing solid medium, and the culture was continued for an additional 3 weeks. When cotyledonary embryos obtained from this two-step culture were transplanted into regeneration medium, more than 95 % developed into plants. Only 31 of the 190 analyzed plants (16.3 %) generated by this method were spontaneous doubled haploids. This two-step culture system outperforms all previously reported culture protocols for isolated microspores of hot pepper, and appears to be a promising tool for the production of haploid plants for hot pepper breeding.  相似文献   

11.
To understand the mechanism of muscle remodeling during Xenopus laevis metamorphosis, we examined the in vitro effect of insulin-like growth factor 1 (IGF-1) on growth and differentiation of three different-fate myogenic cell populations: tadpole tail, tadpole dorsal, and young adult leg muscle. IGF-1 promoted growth and differentiation of both tail and leg myogenic cells only under conditions where these cells could proliferate. Inhibition of cell proliferation by DNA synthesis inhibitor cytosine arabinoside completely canceled the IGF-1’s cell differentiation promotion, suggesting the possibility that IGF-1’s differentiation-promotion effect is an indirect effect via IGF-1’s cell proliferation promotion. IGF-1 promoted differentiation dose dependently with maximum effect at 100–500 ng/ml. RT-PCR analysis revealed the upregulation (11-fold) of ifg1 mRNA expression in developing limbs, suggesting that IGF-1 plays a role in promoting muscle differentiation during limb development. The combined effect of triiodo-l-thyronine (T3) and IGF-1 was also examined. In adult leg cells, IGF-1 promoted growth and differentiation irrespective of the presence of T3. In larval tail cells, cell count was 76% lower in the presence of T3, and IGF-1 did not promote proliferation and differentiation in T3-containing medium. In larval dorsal cells, cell count was also lower in the presence of T3, but IGF-1 enhanced proliferation and differentiation in T3-containing medium. This result is likely due to the presence among dorsal cells of both adult and larval types (1:1). Thus, IGF-1 affects only adult-type myogenic cells in the presence of T3 and helps accelerate dorsal muscle remodeling during metamorphosis.  相似文献   

12.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

13.
Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018  相似文献   

14.
Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD680) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.  相似文献   

15.
In the present study a simple and efficient somatic embryogenesis system was developed from leaf explants of Lycopersicon esculentum L. The protocol has been developed by using plant growth regulators and seaweed extracts a natural biostimulant. The leaf sections were initially cultured on to leaf embryogenic callus induction medium fortified with various concentration and combinations of 2,4-dichlorophenoxy acetic acid (0.2–1.0 mg L?1), picloram (0.2–1.0 mg L?1), and kinetin (0.1–0.5 mg L?1). The best responding concentration in induction of friable embryogenic callus was tested for the proliferation. The friable cultures were detached from the mother culture and inoculated in three different media supplemented with plant growth regulators, plus 0–25 % Caulerpa scalpelliformis or 0–25 % Gracilaria corticata extracts for embryo development. A twofold increase in maturation and germination of somatic embryos was observed in the media containing seaweed extracts (MSMG2 and MSMG3) than the control (MSMG1). The plantlets transferred from plant growth chamber to greenhouse conditions exhibited higher survival rate (90 %) than directly shifted plantlets.  相似文献   

16.
17.
Boesenbergia rotunda is a perennial ginger species rich in flavonoids, flavones, and cyclohexenyl chalcone derivatives. Several of these secondary metabolites have shown promising antiviral and anticancer activities, and thus, it is important to optimize methods for robust production of clonal materials. In this study, cell suspensions were established and their growth capacities were evaluated in liquid media supplemented with varying growth regulator compositions. The highest settled cell volume of 6.1?±?0.3 ml with a specific growth rate of 0.0892?±?0.0035 was achieved by maintaining cells in Murashige and Skoog liquid media supplemented with 1.0 mg L?1 of 2,4-dichlorophenoxyacetic acid and 0.5 mg L?1 6-benzyladenine, representing a 12-fold increase in cell volume during the culture period. A somatic embryogenesis rate of 1,433.33?±?387.84 somatic embryos per milliliter of settled cells was achieved with an inoculation cell density of 50 μl settled cell volume and on growth regulator-free agar plates. Around half (53.5?±?7.9%) of the somatic embryos germinated into complete plantlets on media supplemented with 3 mg L?1 6-benzyladenine and 1 mg L?1 α-naphthaleneacetic acid. The plantlets were successfully transferred to soil and grown in the greenhouse. Phytochemical profiling via high-performance liquid chromatography analysis revealed that regenerated plantlets retained the capacity to produce and accumulate bioactive compounds. Hence, this protocol will be helpful for metabolic engineering and functional studies of genes and enzymes involved in the biosynthetic pathway of valuable compounds in B. rotunda.  相似文献   

18.
Fungi are well known for their vast diversity of secondary metabolites that include many life-saving drugs and highly toxic mycotoxins. In general, fungal cultures producing such metabolites are immune to their toxic effects. However, some are known to produce self-toxic compounds that can pose production optimization challenges if the metabolites are needed in large amounts for chemical modification. One such culture, LV-2841, was identified as the lead for one of our exploratory projects. This culture was found to be a slow grower that produced trace amounts of a known metabolite, cercosporamide, under the standard flask fermentation conditions, and extensive medium optimization studies failed to yield higher titers. Poor growth of the culture in liquid media was attributed to the self-toxicity of cercosporamide to the producing organism, and the minimum inhibitory concentration (MIC) of cercosporamide was estimated to be in the range of 8–16 μg/ml. Fermentations carried out in media containing Diaion® HP20 resin afforded significantly higher titers of the desired compound. While several examples of resin-based fermentations of soil streptomyces have been published, this approach has rarely been used for fungal fermentations. Over a 100-fold increase in the production titer of cercosporamide, a self-toxic secondary metabolite, was achieved by supplementing the production medium with a commercially available neutral adsorbent resin.  相似文献   

19.
To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf‐life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell‐free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998–1008, 2016  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号