首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism.

Methodology/Principal Findings

We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage.

Conclusions/Significance

The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.  相似文献   

3.
Vimentin in the Central Nervous System   总被引:7,自引:0,他引:7  
Intermediate filament proteins were identified by two-dimensional gel electrophoresis in urea extracts of rat optic nerves undergoing Wallerian degeneration and in cytoskeletal preparations of rat brain and spinal cord during postnatal development. The glial fibrillary acidic (GFA) protein and vimentin were the major optic nerve proteins following Wallerian degeneration. Vimentin was a major cytoskeletal component of newborn central nervous system (CNS) and then progressively decreased until it became barely identifiable in mature brain and spinal cord. The decrease of vimentin occurred concomitantly with an increase in GFA protein. A protein with the apparent molecular weight of 61,000 and isoelectric point of 5.6 was identified in both cytoskeletal preparations of brain and spinal cord, and in urea extracts of normal optic nerves. The protein disappeared together with the polypeptides forming the neurofilament triplet in degenerated optic nerves.  相似文献   

4.
In a review of 45 patients with ankylosing spondylitis 10 had neurological symptoms and signs and three of them had two separate neuropathological disorders. The neurological profiles fell into five main categories—multiple sclerosis, the cauda equina syndrome, focal epilepsy, vertebrobasilar insufficiency, and peripheral nerve lesions. An association between ankylosing spondylitis and multiple sclerosis is suggested, possibly due to an immunological defect or to one being a complication of the other.  相似文献   

5.
6.
7.
Thymidine Transport in the Central Nervous System   总被引:10,自引:9,他引:1  
  相似文献   

8.
Riboflavin Homeostasis in the Central Nervous System   总被引:2,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

9.
Cytokine Actions in the Central Nervous System   总被引:9,自引:0,他引:9  
Cytokines and chemokines have been implicated in contributing to the initiation, propagation and regulation of immune and inflammatory responses. Also, these soluble mediators have important roles in contributing to a wide array of neurological diseases such as multiple sclerosis, AIDS Dementia Complex, stroke and Alzheimers disease. Cytokines and chemokines are synthesized within the central nervous system by glial cells and neurons, and have modulatory functions on these same cells via interactions with specific cell-surface receptors. In this article, I will discuss the ability of glial cells and neurons to both respond to, and synthesize, a variety of cytokines. The emphasize will be on three select cytokines; interferon-gamma (IFN-γ), a cytokine with predominantly proinflammatory effects; interleukin-6 (IL-6), a cytokine with both pro- and anti-inflammatory properties; and transforming growth factor-beta (TGF-β), a cytokine with predominantly immunosuppressive actions. The significance of these cytokines to neurological diseases with an immunological component will be discussed.  相似文献   

10.
In Vitro Retina as an Experimental Model of the Central Nervous System   总被引:11,自引:3,他引:8  
Abstract Methods are described for isolating adult rabbit retina and maintaining it in a medium designed to resemble CSF. Morphologic, metabolic, and electrophysiologic measurements obtained on the in vitro retinas showed that they remained in a nearly physiological state for at least 8 h, and even after 2 days in vitro they still exhibited a high level of metabolic activity and electrical responsiveness to light. Physiological activity was modified by photic stimulation, and data are presented to document changes in metabolism in response to the changes in function. The isolated retina appears to offer a number of unusual advantages for studying relationships between function and metabolism in organized mammalian central nervous tissue  相似文献   

11.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily that acts on responsive cells via binding to a cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK can regulate numerous cellular responses in vitro and in vivo. Recent studies have indicated that TWEAK and Fn14 are expressed in the central nervous system (CNS), and that in response to a variety of stimuli, including cerebral ischemia, there is an increase in TWEAK and Fn14 expression in perivascular astrocytes, microglia, endothelial cells, and neurons with subsequent increase in the permeability of the blood–brain barrier (BBB) and cell death. Furthermore, there is a growing body of evidence indicating that TWEAK induces the activation of the NF-κB in the CNS with release of proinflammatory cytokines and matrix metalloproteinases. In addition, inhibition of TWEAK activity by either treatment with a Fn14-Fc fusion protein or neutralizing anti-TWEAK antibodies has shown therapeutic efficacy in animal models of ischemic stroke, cerebral edema, and multiple sclerosis.  相似文献   

12.
13.
14.
15.
16.
17.
Cytokine-Induced Inflammation in the Central Nervous System Revisited   总被引:6,自引:0,他引:6  
Cytokines play an essential role as mediators of the immune response. They usually function as part of a network of interactive signals that either activate, enhance, or inhibit the ensuing reaction. An important contribution of this cytokine cascade is the induction of an inflammatory response that recruits and activates subsets of leukocytes that function as effector cells in the response to the sensitizing antigen. Proinflammatory cytokines activate endothelial cells (EC) to express adhesion molecules and induce the release of members of the chemokine family, thus focusing and directing the inflammatory response to sites of antigen recognition. However, the vasculature of the central nervous system (CNS) is highly specialized and restricts the access of components of the immune system to the CNS compartment. In this review, we address the question as to whether endothelial cells in the CNS respond differently to specific cytokines known to induce either a proinflammatory effect or a regulatory effect in systemic vascular beds.  相似文献   

18.
Glycosphingolipids are a large group of complex lipids particularly abundant in the outer layer of the neuronal plasma membranes. Qualitative and quantitative changes in glycosphingolipids have been reported along neuronal differentiation and aging. Their half-life is short in the nervous system and their membrane composition and content are the result of a complex network of metabolic pathways involving both the de novo synthesis in the Golgi apparatus and the lysosomal catabolism. In particular, most of the enzymes of glycosphingolipid biosynthesis and catabolism have been found also at the plasma membrane level. Their action could be responsible for the fine tuning of the plasma membrane glycosphingolipid composition allowing the formation of highly specialized membrane areas, such as the synapses and the axonal growth cones. While the correlation between the changes of GSL pattern and the modulation of the expression/activity of different glycosyltransferases during the neuronal differentiation has been widely discussed, the role of the glycohydrolytic enzymes in this process is still little explored. For this reason, in the present review, we focus on the main glycolipid catabolic enzymes β-hexosaminidases, sialidases, β-galactosidases, and β-glucocerebrosidases in the process of the neuronal differentiation.  相似文献   

19.
Several members of the cation-chloride cotransporter (solute carrier family 12, SLC12) gene family are expressed within the central nervous system, with one family member, the K+-Cl- cotransporter KCC2, exclusive to neurons. These transporters are best known for their roles in cell volume regulation and epithelial salt transport, but are increasingly receiving attention in neuroscience. In particular, intracellular chloride activity and hence the neuronal response to GABA and glycine appears to be determined by a balance between chloride efflux and influx through KCC2 and the Na+-K+-2Cl- cotransporter NKCC1, respectively. This relationship has important implications for neuronal development, sensory perception, neuronal excitability, and the response to neuronal injury. Finally, the association between loss of function in the K+-Cl- cotransporter KCC3, with a severe peripheral neuropathy associated with agenesis of the corpus callosum, has revealed an unexpected role for K+-Cl- cotransport in the development and/or maintenance of both the central and peripheral nervous systems.  相似文献   

20.
Neurochemical Research -  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号