首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A large collection, such as the sorghum [Sorghum bicolor (L.) Moench] landrace collection held at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), represents a challenge for the maintenance of both the accessions of and the information documented for the germplasm collection. The accessibility and knowledge of the landrace collection are the essential factors for an efficient utilization of the genetic resources by both breeders and farmers. Different sampling strategies, either random or non-random, were proposed to obtain subsets of reduced size (core collection). Three subsets were established; a random sampling within a stratified collection (logarithmic strategy: L); a sample based upon morpho-agronomic diversity (principal component score strategy: PCS); and a sample based upon an empirical knowledge of sorghum (taxonomic strategy: T). Comparisons of these three samples for morpho-agronomic characterization and passport information were assessed to determine their impact on phenotypic diversity. For their overall diversity, the three subsets did not differ, as shown with the two-dimensional representation of the morpho-agronomic diversity and the Shannon-Weaver diversity indices. When comparisons for morpho-agronomic and passport data were considered, the PCS subset looked similar to the entire landrace collection. The L subset showed differences for characters associated with the photoperiod reaction that was considered in the stratification of the collection. The T subset was the most distinct from the entire landrace collection as it over-represented the landraces selected by farmers for specific uses and covered the widest range of geographical adaptation and morpho-agronomic characteristics. Received: 5 October 1999 / Accepted: 3 November 1999  相似文献   

2.
Greater insight into the dynamics of genetic resources of crop plants is needed in order to pinpoint detrimental evolutionary patterns and draw up conservation priorities. The present study demonstrated farmer management of crop population structure and temporal evolution of rice genetic diversity in traditional production systems. The 16 STMS primers analysed for 11 rice landrace populations indicated enough polymorphism to fully differentiate the inter- and intrapopulation diversity. A total number of 98 alleles were recorded, of which 91 were common and seven were rare. The mean number of alleles per locus was 6.13 and for different groups of rice landrace populations, namely five populations of upland common landrace Jaulia, three populations of irrigated common landrace Thapachini and one population each of three distinct rare landraces were 4.37, 2.75 and 4.37, respectively. The study also compared genebank-conserved ( ex situ ) populations and on-farm-managed ( in situ ) landrace populations of same named landraces Jaulia and Thapachini, and revealed greater number of alleles per locus for on-farm-managed populations as compared to the populations under static management. A substantial number of alleles specific to populations under dynamic management could also be recorded. Further, the rare landrace populations included in the present study were more diverse than the common landrace populations. The rare landraces were distinct genetic entities largely representing locally common alleles. Investigating the population genetic structure is therefore helpful in monitoring change in diversity over time and space, and also for devising a rational plan for management of farmer landraces on-farm.  相似文献   

3.
The capability of molecular markers to provide information of genetic structure is influenced by their number and the way they are chosen. This study evaluates the effects of single nucleotide polymorphism (SNP) number and selection strategy on estimates of germplasm diversity and population structure for different types of barley germplasm, namely cultivar and landrace. One hundred and sixty-nine barley landraces from Syria and Jordan and 171 European barley cultivars were genotyped with 1536 SNPs. Different subsets of 384 and 96 SNPs were selected from the 1536 set, based on their ability to detect diversity in landraces or cultivated barley in addition to corresponding randomly chosen subsets. All SNP sets except the landrace-optimised subsets underestimated the diversity present in the landrace germplasm, and all subsets of SNP gave similar estimates for cultivar germplasm. All marker subsets gave qualitatively similar estimates of the population structure in both germplasm sets, but the 96 SNP sets showed much lower data resolution values than the larger SNP sets. From these data we deduce that pre-selecting markers for their diversity in a germplasm set is very worthwhile in terms of the quality of data obtained. Second, we suggest that a properly chosen 384 SNP subset gives a good combination of power and economy for germplasm characterization, whereas the rather modest gain from using 1536 SNPs does not justify the increased cost and 96 markers give unacceptably low performance. Lastly, we propose a specific 384 SNP subset as a standard genotyping tool for middle-eastern landrace barley.  相似文献   

4.
广西地方稻种资源核心种质构建和遗传多样性分析   总被引:1,自引:0,他引:1  
以丁颖分类体系分组原则与组内逐层聚类取样方法,对8609份广西地方栽培稻资源表型数据信息进行分析,通过对表型保留比例等评价指标的多重比较确定核心种质总体取样比例,构建出占总体样本5%(414份)的广西地方栽培稻资源初级核心种质。初级核心种质能代表总体遗传变异的89%。用34对SSR分子标记对初级核心种质进行遗传多样性分析,结果表明:广西地方栽培稻资源有较高的遗传多样性(等位基因数A为4.91,Nei’s多样性指数为0.574)。就Nei’s遗传多样性指数而言,粳稻高于籼稻,晚稻高于早稻,水稻高于陆稻,糯稻高于粘稻;来自桂中的稻种资源具有最高的遗传多样性。研究最终利用SSR数据,把414份初级核心种质压缩50%后形成209份核心种质,核心种质基因保留比例达到98%以上,有效代表了广西地方栽培稻资源多样性水平。  相似文献   

5.
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex‐situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a “proof of concept” for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR‐based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.  相似文献   

6.
The East African highlands are a region of important common bean production and high varietal diversity for the crop. The objective of this study was to uncover the diversity and population structure of 192 landraces from Ethiopia and Kenya together with four genepool control genotypes using morphological phenotyping and microsatellite marker genotyping. The germplasm represented different common bean production ecologies and seed types common in these countries. The landraces showed considerable diversity that corresponded well to the two recognized genepools (Andean and Mesoamerican) with little introgression between these groups. Mesoamerican genotypes were predominant in Ethiopia while Andean genotypes were predominant in Kenya. Within each country, landraces from different collection sites were clustered together indicating potential gene flow between regions within Kenya or within Ethiopia. Across countries, landraces from the same country of origin tended to cluster together indicating distinct germplasm at the national level and limited gene flow between the two countries highlighting divided social networks within the regions and a weak trans-national bean seed exchange especially for landrace varieties. One exception to this may be the case of small red-seeded beans where informal cross-border grain trade occurs. We also observed that genetic divergence was slightly higher for the Ethiopian landraces compared to Kenyan landraces and that Mesoamerican genotypes were more diverse than the Andean genotypes. Common beans in eastern Africa are often cultivated in marginal, risk-prone farming systems and the observed landrace diversity should provide valuable alleles for adaptation to stressful environments in future breeding programs in the region.  相似文献   

7.
新疆甜瓜地方种质资源具有丰富的遗传多样性,是新疆哈密瓜遗传改良的重要基因库。以121份新疆甜瓜地方品种为研究对象,结合按来源分组和系统聚类选择的方法,通过多重比较29个表型性状数据确定适宜的取样比例,筛选出25份地方品种为初选核心种质。在初选核心种质取样量上,人工定向补充5份优异种质和极值材料确定了核心种质,约占地方品种总数量的25%。对表型保留比例、遗传多样性指数、变异系数、表型频率方差、极差符合率、均值符合率、标准差符合率等检验参数进行了检验和评价。结果表明:调整后的核心种质除标准差符合率降低外,其余参数均优于或等于初选核心种质,更能代表原始样品;所构建的核心种质很好地保留了所有地方品种资源的遗传多样性和变异幅度。  相似文献   

8.
中国普通小麦初选核心种质的产生   总被引:68,自引:8,他引:60  
对中国普通小麦种质资源构建了初选核心种质。地方品种和选育品种分别构建。按栽培区(地理生态区)分组。地方品种按亚区分为28组,选育品种按大区分为10组。各组内在21个表型性状聚类的基础上,按平方根法取样,并依遗传多样性指数与遗传丰富度加以调整。提出在生产上或育种中起过重要作用的品种为必选材料。初步选定的材料经种植核对,淘汰错杂后,产生初选核心种质。地方品种全部供试材料11694份,初选核心种质3283份,取样比例为28.18%。选育品种全部11441份,初选核心种质1684份,取样比例为14.9%。计划经分子标记分析,最后核心种质的比例占全部种质的10%左右。根据全部材料21个性状遗传多样性指数测验,初选核心种质,除芒和壳两性状外,与全部种质的遗传差异均未达到显水平。讨论了初选核心种质的构建方法。指出陕南部西山地和汾渭谷地是中国小麦地方品种遗传变异多样性的富集地。育成品种多样性程度以西南冬麦区和黄淮冬麦区为最高。  相似文献   

9.
Assessment of genetic diversity within and between pearl millet landraces   总被引:4,自引:0,他引:4  
A minimum core subset of pearl millet [Pennisetum glaucum (L.) R. Br.], which comprised 504 landrace accessions, was recently established from the global pearl millet germplasm collection of ICRISAT. The accessions for this core were selected by a random proportional sampling strategy following stratification of the entire landrace collection (about 16,000 accessions) according to their geographic origin and morpho-agronomic traits. In this study RFLP probes were used to quantify the genetic diversity within and between landrace accessions of this minimum core using a subset comprising ten accessions of Indian origin. Twenty five plants per accession were assayed with EcoRI, EcoRV, HindIII and DraI restriction enzymes, and 16 highly polymorphic RFLP probes, nine associated with a quantitative trait loci (QTLs) for downy mildew resistance, and five associated with a QTL for drought tolerance. A total of 51 alleles were detected using 16 different probe-enzyme combinations. The partitioning of variance components based on the analysis of molecular variance (AMOVA) for diversity analysis revealed high within-accession variability (30.9%), but the variability between accessions was significantly higher (69.1%) than that within the accessions. A dendrogram based on the dissimilarity matrix obtained using Ward's algorithm further delineated the 250 plants into ten major clusters, each comprised of plants from a single accession (with the exception of two single plants). A similar result was found in an earlier study using morpho-agronomic traits and geographic origin. This study demonstrated the utility of RFLP markers in detecting polymorphism and estimating genetic diversity in a highly cross-pollinated species such as pearl millet. When less-tedious marker systems are available, this method could be further extended to assess the genetic diversity between and within the remaining accessions in the pearl millet core subset.  相似文献   

10.
This study examined the genetic diversity in 20 rice landrace populations from parts of traditional farming areas of the Indian Himalayas using 11 mapped simple sequence repeats (SSR) loci. Twenty‐four individuals sampled from each of the 20 landraces (480 individuals), which were collected from farmers from Northwest to Northeast Himalaya, showed that all landraces showed within population variation and none were homogeneous. The number of polymorphic loci in a landrace population ranged from 5 to 11. A total of 71 alleles were recorded of which 58 were common and 13 were rare. Of the 71 alleles, 46 were common to both Northwest and Northeast regions, whereas 9 were unique to the former and 16 were unique to the latter. The mean number of alleles per locus was 6.45 and for landrace populations from Northwest and Northeast regions were 5.0 and 5.64, respectively. Population differentiation, as shown by a high FST value (0.61), was greater for Northeast populations. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram classified the populations into three major clusters: cluster I comprised seven populations from the Northwest region, cluster II comprised seven populations from the Northeast region and cluster III comprised populations from both regions. Investigating the population genetic structure can help monitor change in diversity over time and space, and also help devise a rational plan for management of crop landraces on‐farm under farmer management.  相似文献   

11.
Fluorescence microsatellite markers were employed to reveal genetic diversity of 340 wheat accessions consisting of 229 landraces and 111 modern varieties from the Northwest Spring Wheat Region in China. The 340 accessions were chosen as candidate core collections for wheat germplasm in this region. A core collection representing the genetic diversity of these accessions was identified based on a cluster dendrogram of 78 SSR loci. A total of 967 alleles were detected with a mean of 13.6 alleles (5–32) per locus. Mean PIC was 0.64, ranged from 0.05 to 0.91. All loci were distributed relatively evenly in the A, B and D wheat genomes. Mean genetic richness of A, B and D genomes for both landraces and modern varieties was B > A > D. However, mean genetic diversity indices of landraces changed to B > D > A. As a whole, genetic diversity of the landraces was considerably higher than that of the modern varieties. The big difference of genetic diversity indices in the three genomes suggested that breeding has exerted greater selection pressure in the D than the A or B genomes in this region. Changes of allelic proportions represented in the proposed core collection at different sampling scales suggested that the sampling percentage of the core collection in the Northwest Spring Wheat Region should be greater than 4% of the base collection to ensure that more than 70% of the variation is represented by the core collection. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
元阳3个长期连续栽培水稻地方品种内部遗传异质性分析   总被引:1,自引:0,他引:1  
水稻地方品种是稻种资源的重要组成部分,遗传多样性十分丰富,具有推广改良品种所缺少或没有的优质种质,是水稻育种和稻种起源、进化研究不可缺少的过渡材料。目前,对水稻地方品种间遗传多样性研究较多,而对其内部异质性研究甚微。本研究用24对微卫星(SSR)引物对云南元阳梯田3个栽种历史悠久的水稻地方品种的内部遗传异质性进行了分析。共检测出117个等位基因,香农指数为红脚老粳居群(0.5911)>白脚老粳A居群(0.4875)>月亮谷居群(0.3070)。结果显示:3个地方品种的内部遗传异质性丰富,且遗传异质性主要得益于个体间,而非居群间。  相似文献   

13.

Key message

Capitalizing upon the genomic characteristics of long-term random mating populations, sampling from pre-selected landraces is a promising approach for broadening the genetic base of elite germplasm for quantitative traits.

Abstract

Genome-enabled strategies for harnessing untapped allelic variation of landraces are currently evolving. The success of such approaches depends on the choice of source material. Thus, the analysis of different strategies for sampling allelic variation from landraces and their impact on population diversity and linkage disequilibrium (LD) is required to ensure the efficient utilization of diversity. We investigated the impact of different sampling strategies on diversity parameters and LD based on high-density genotypic data of 35 European maize landraces each represented by more than 20 individuals. On average, five landraces already captured ~95% of the molecular diversity of the entire dataset. Within landraces, absence of pronounced population structure, consistency of linkage phases and moderate to low LD levels were found. When combining data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 24 individuals per landrace with 5k SNPs was sufficient for obtaining representative estimates of diversity and LD levels to allow an informed pre-selection of landraces. Integrating results from European with Central and South American landraces revealed that European landraces represent a unique and diverse spectrum of allelic variation. Sampling strategies for harnessing allelic variation from landraces depend on the study objectives. If the focus lies on the improvement of elite germplasm for quantitative traits, we recommend sampling from pre-selected landraces, as it yields a wide range of diversity, allows optimal marker imputation, control for population structure and avoids the confounding effects of strong adaptive alleles.
  相似文献   

14.
Maize (Zea mays L.) harbours significant genetic diversity not only in its centre of origin (Mexico) but also in several countries worldwide, including India, in the form of landraces. In this study, DNA fingerprinting of 48 landrace accessions from diverse regions of India was undertaken using 42 fluorescent dye-labeled Simple Sequence Repeat (SSR) markers, followed by allele resolution using DNA sequencer and analysis of molecular diversity within and among these landraces. The study revealed a large number of alleles (550), with high mean number of alleles per locus (13.1), and Polymorphism Information Content (PIC) of 0.60, reflecting the level of diversity in the landrace accessions. Besides identification of 174 unique alleles in 44 accessions, six highly frequent SSR alleles were detected at six loci (phi014, phi090, phi112, umc1367, phi062 and umc1266) with individual frequencies greater than 0.75, indicating that chromosomal regions harboring these SSR alleles are not selectively neutral. F statistics revealed very high genetic differentiation, population subdivision and varying levels of inbreeding in the landraces. Analysis of Molecular Variance showed that 63 % of the total variation in the accessions could be attributed to within-population diversity, and 37 % represented between population diversity. Cluster analysis of SSR data using Nei’s genetic distance and UPGMA revealed considerable genetic diversity in these populations, although no clear separation of accessions was observed based on their geographic origin.  相似文献   

15.
In South America, native maize germplasm has been extensively studied particularly for the Andean region. However, relatively few genetic diversity studies include materials from the eastern region of the continent. Herein we present a genetic diversity characterization of four Popcorn maize landraces, maintained in indigenous settlements, from Northeastern Argentina (NEA). In addition, one Popcorn landrace from Northwestern Argentina (NWA) was incorporated for comparison. We characterized these landraces using ten microsatellite markers. For the whole data set, a total of 65 alleles were found, with an average of 7.22 alleles per locus. The average gene diversity was 0.370. Global fit to Hardy–Weinberg proportions was observed in all landraces. Global estimates of F ST revealed a significant differentiation among the populations. Individual Neighbor-joining clustering and Bayesian analyses allowed the recognition of most populations studied. Two main groups were distinguished by the Neighbor-joining clustering of populations. This grouping pattern would be consistent with a hypothesis of successive introductions of Popcorn in South America. The results presented will be useful to design strategies that maximize the utility of maize genetic resources.  相似文献   

16.
Statistical genetic considerations for maintaining germ plasm collections   总被引:2,自引:0,他引:2  
One objective of the regeneration of genetic populations is to maintain at least one copy of each allele present in the original population. Genetic diversity within populations depends on the number and frequency of alleles across all loci. The objectives of this study on outbreeding crops are: (1) to use probability models to determine optimal sample sizes for the regeneration for a number of alleles at independent loci; and (2) to examine theoretical considerations in choosing core subsets of a collection. If we assume that k-1 alleles occur at an identical low frequency of p0 and that the kth allele occurs at a frequency of 1-[(k-1)p0], for loci with two, three, or four alleles, each with a p0 of 0.05, 89–110 additional individuals are required if at least one allele at each of 10 loci is to be retained with a 90% probability; if 100 loci are involved, 134–155 individuals are required. For two, three, or four alleles, when p0 is 0.03 at each of 10 loci, the sample size required to include at least one of the alleles from each class in each locus is 150–186 individuals; if 100 loci are involved, 75 additional individuals are required. Sample sizes of 160–210 plants are required to capture alleles at frequencies of 0.05 or higher in each of 150 loci, with a 90–95% probability. For rare alleles widespread throughout the collection, most alleles with frequencies of 0.03 and 0.05 per locus will be included in a core subset of 25–100 accessions.  相似文献   

17.
我国西南地区玉米地方品种遗传多样性的SSR分子标记分析   总被引:1,自引:0,他引:1  
利用微卫星(SSR)标记技术和DNA混合取样方法,选取均匀覆盖玉米染色体组的42对SSR引物,检测了来自我国西南地区54个玉米地方品种的遗传多样性。在54个玉米地方品种中检测到256个等位基因,每个SSR标记的等位基因数为2~9个,平均6.1个,说明我国西南地区玉米地方品种遗传多样性丰富。根据遗传相似系数矩阵做出的树状图,将54个玉米地方品种大致划分成4类,来源于同一地区的多数玉米地方品种划分在同一类中,表明西南地区玉米地方品种的地理分布与其遗传背景存在内在联系。从54个玉米地方品种中选出11个,每个品种选取15个单株,共165个DNA单株样品,分析玉米地方品种的遗传结构及其品种内的遗传多样性。对于检测玉米地方品种的遗传多样性,DNA单株样品分析优于DNA混合样品分析,42对相同的SSR引物在11个玉米地方品种中检测到330个等位基因,平均等位基因数A=7.86,有效等位基因数Ae=3.90,平均期望杂合度He=0.69,实际观察杂合度H0=0.37。据遗传结构分析结果,固定指数(F)为0.25~0.79,表明玉米地方品种是典型的混合繁育系统;由于杂合体不足,玉米地方品种群体间及群体内的遗传结构均偏离了Hardy-Weinberg平衡;杂合性基因多样度比率(Fst)平均为0.07,表明品种间和品种内的遗传变异分别占总遗传变异的7%和93%。玉米地方品种内遗传多样性及品种间遗传距离分析结果表明,在我国西南地区,分布在四川的玉米地方品种具有最丰富的遗传变异。经综合分析推测,我国西南地区玉米地方品种最早引进到四川种植,由此向毗邻地区传播扩散。  相似文献   

18.
Although molecular markers are becoming the tool of choice to develop core collections in plants, the examples of their use in woody perennial species are very scarce. In this work, we used simple sequence repeat (SSR) marker data to develop a core collection in an underutilised subtropical fruit tree species, cherimoya ( Annona cherimola , Annonaceae), from an initial collection of 279 genotypes from different countries. We compared six alternative allocation methods to construct the core collection, four not based upon the similarity dendrogram [random sampling, maximisation strategy (M strategy) and simulated annealing algorithm maximising both genetic diversity and number of SSR alleles] and two based on dendrogram data (logarithmic strategy and stepwise clustering). The diversity maintained in each subset was compared with that present in the entire collection. The results obtained indicate that the use of SSRs together with the M strategy is the most efficient method to develop a core collection in cherimoya. In the best subset, with 40 accessions, all the SSR alleles present in the whole collection were recovered and no significant differences in frequency distribution of alleles for any of the loci studied or in variability parameters ( H O, H E) were recorded between the core and the whole collection.  相似文献   

19.
Hao C  Wang L  Ge H  Dong Y  Zhang X 《PloS one》2011,6(2):e17279
Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5-10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ~ 25 cM) compared to landraces (<5 ~ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.  相似文献   

20.
中国小麦地方品种内和品种间醇溶蛋白遗传多样性分析   总被引:8,自引:0,他引:8  
为了揭示中国小麦地方品种内遗传异质性和品种间的遗传多样性,采用A-PAGE方法,对72份来自不同生态区的地方品种进行醇溶蛋白构成分析。结果发现,全部供试地方品种共观察到101条迁移率不同的务带,构成229种醇溶蛋白构型,每个品种醇溶蛋白条带数目为14—24。63份(87.5%)地方品种在品种内具有2种以上醇溶蛋白变异类型,其中,变异类型最多的品种二红皮小麦(ZM004659)30个子粒中有14种之多,多数品种具有2—3种变异类型。品种内醇溶蛋白构型一致的品种共有9个,占12.5%。这表明供试的大多数小麦地方品种内个体间在醇溶蛋白构成上具有遗传异质性。聚类分析表明,相同生态区的地方品种没有整齐地聚为一类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号