首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential clinical utility of galanin peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia. In addition to possessing potent anticonvulsant efficacy, galanin analogs are analgesic in various assays. The purpose of these studies was to evaluate the lead galanin receptor type 2 (GalR2)-preferring analog, NAX 810-2, in various pain assays, as well as determine any potential for insulin inhibition, growth hormone stimulation, and cognitive impairment. NAX 810-2 was evaluated in mouse (carrageenan, formalin, tail flick, plantar incision) and rat pain models (partial sciatic nerve ligation). NAX 810-2 dose-dependently increased paw withdrawal latency following plantar administration of carrageenan (ED50 4.7 mg/kg). At a dose of 8 mg/kg, NAX 810-2 significantly attenuated nociceptive behaviors following plantar administration of formalin, and this was observed for both phase I (acute) and phase II (inflammatory) components of the formalin behavioral response. NAX-810-2 was active at higher doses in the mouse tail flick model (ED50 20.2 mg/kg) and similarly, reduced mechanical allodynia following plantar incision in mice at a dose of 24 mg/kg. NAX 810-2 also reduced mechanical allodynia in the partial sciatic nerve ligation model at a dose of 4 mg/kg. In addition, NAX 810-2 did not impair insulin secretion at doses of 2.5 and 8 mg/kg (acutely) or at a dose of 8 mg/kg given daily for 5 days. Similarly, 8 mg/kg (twice daily, 5 days) of NAX 810-2 did not increase growth hormone levels. These results demonstrate that NAX 810-2 possesses a favorable pre-clinical profile as a novel and first-in-class analgesic.  相似文献   

2.
In a previous report, alterations of the serotonin metabolism were previously reported in mice intoxicated with repeated low doses of soman. In order to better understand the effects induced by repeated low-dose exposure to organophosphorus compounds on physiological and behavioural functions, the levels of endogenous monoamines (serotonin and dopamine) in different brain areas in mice intoxicated with sublethal dose of (O-ethyl-S-[2(di-isopropylamino) ethyl] methyl phosphonothioate) (VX) were analysed by HPLC method with electrochemical detection. Animals were injected once a day for three consecutive days with 0.10 LD50 of VX (5 μg/kg, i.p). Neither severe signs of cholinergic toxicity nor pathological changes in brain tissue of exposed animals were observed. Cholinesterase (ChE) activity was only inhibited in plasma (a maximum of 30 % inhibition 24 h after the last injection of VX), but remained unchanged in the brain. Serotonin and dopamine (DA) metabolism appeared significantly modified. During the entire period of investigation, at least one of the three parameters investigated (i.e. DA and DOPAC levels and DOPAC/DA ratio) was modified. During the toxic challenge, an increase of the serotonin metabolism was noted in hippocampus (HPC), hypothalamus/thalamus, pons medulla and cerebellum (CER). This increase was maintained 4 weeks after exposure in HPC, pons medulla and CER whereas a decrease in cortex 3 weeks after the toxic challenge was observed. The lack of correlation between brain ChE activity and neurochemical outcomes points out to independent mechanisms. The involvement in possibly long-lasting behavioural disorders is discussed.  相似文献   

3.
This study investigated the toxicity of rats exposed to lead acetate (AcPb) during the second phase of brain development (8–12 days postnatal) in hematological and cerebral parameters. Moreover, the preventive effect of zinc chloride (ZnCl2) and N-acetylcysteine (NAC) was investigated. Pups were injected subcutaneously with saline (0.9% NaCl solution), ZnCl2 (27 mg/kg/day), NAC (5 mg/kg/day) or ZnCl2 plus NAC for 5 days (3rd–7th postnatal days), and with saline (0.9% NaCl solution) or AcPb (7 mg/kg/day) in the five subsequent days (8th–12th postnatal days). Animals were sacrificed 21 days after the last AcPb exposure. Pups exposed to AcPb presented inhibition of blood porphobilinogen-synthase (PBG-synthase) activity without changes in hemoglobin content. ZnCl2 pre-exposure partially prevented PBG-synthase inhibition. Regarding neurotoxicity biomarkers, animals exposed to AcPb presented a decrease in cerebrum acetylcholinesterase (AChE) activity and an increase in Pb accumulation in blood and cerebrum. These changes were prevented by pre-treatment with ZnCl2, NAC, and ZnCl2 plus NAC. AcPb exposure caused no alteration in behavioral tasks. In short, results show that AcPb inhibited the activity of two important enzymatic biomarkers up to 21 days after the end of the exposure. Moreover, ZnCl2 and NAC prevented the alterations induced by AcPb.  相似文献   

4.
Objective of the study is to evaluate the modifying potential of p-methoxycinnamic acid (p-MCA), an active rice bran phenolic acid on biotransforming bacterial enzymes and xenobiotic metabolizing enzymes in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. 48 male albino wistar rats were divided into six groups. Group1 (control) received modified pellet diet and 0.1 % carboxymethylcellulose; group2 received modified pellet diet along with p-MCA (80 mg/kg b.wt. p.o.) everyday for 16 weeks; groups 3-6 received 1,2-dimethylhydrazine (DMH) (20 mg/kg b.wt.) subcutaneous injection once a week for the first 4 weeks, while groups 4–6 received p-MCA at three different doses of 20, 40 and 80 mg/kg b.wt. p.o. everyday for 16 weeks. A significant increase in carcinogen-activating enzymes (cytochrome P450, cytochrome b5, cytochrome P4502E1, NADH-cytochrome-b5-reductase and NADPH-cytochrome-P450 reductase) with concomitant decrease in phaseII enzymes, DT-Diaphorase, glutathione S-transferase, UDP-glucuronyl-transferase and gamma glutamyltransferase were observed in group3 compared to control. DMH treatment significantly increased the activities of feacal and colonic bacterial enzymes (β-glucosidase, β-galactosidase, β-glucuronidase, nitroreductase, sulphatase and mucinase). p-MCA supplementation (40 mg/kg b.wt) to carcinogen exposed rats inhibited these enzymes, which were near those of control rats. The formation of dysplastic aberrant crypt foci in the colon and the histopathological observations of the liver also supports our biochemical findings. p-MCA (40 mg/kg b.wt.) offers remarkable modulating efficacy of biotransforming bacterial and xenobiotic metabolizing enzymes in colon carcinogenesis.  相似文献   

5.
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.  相似文献   

6.
In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5–9 to 2–3 mmol/L); however, plasma adrenaline concentration was increased 20–30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4–5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3–2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.  相似文献   

7.
Carbon monoxide (CO) produced by incomplete combustion of hydrocarbons, has many toxic effects on different organs, especially the heart and brain that have greater demands for oxygen. The present study aimed to evaluate the protective effects of granulocyte colony stimulating factor (G-CSF) on apoptosis after CO poisoning in rats. Male Wistar rats were exposed to CO 1500 or 3000 ppm for 60 min. Single and multiple doses of G-CSF (10, 50, and 100 μg/kg) were administered to animals. After CO poisoning, carboxyhemoglobin concentration was measured, apoptotic cells were evaluated by TUNEL assay and caspase 3 activity was determined by immunofluorescence. Blood levels of carboxyhemoglobin significantly increased following exposure to both 1500 and 3000 ppm concentrations of CO. However, carboxyhemoglobin levels were significantly higher following exposure to CO 3000 ppm compared to CO 1500 ppm (p?<?0.05). Differences in caspase 3 activity between G-CSF and control groups were significant and G-CSF could decrease apoptosis following CO 3000 ppm poisoning (p?<?0.001). TUNEL assay showed that in rats treat with 5 doses of G-CSF 100 μg/kg, apoptosis was significantly ameliorated compared to control rats and sham (rats that were not exposed to CO) group (p?<?0.05). Concerning caspase 3 activity and apoptosis rate, the best results were found in rats exposed to 3000 ppm and treated with G-CSF 100 μg/kg. In this study, we confirmed that CO poisoning leads to cardiomyocytes apoptosis which could be significantly reduced by G-CSF treatment.  相似文献   

8.
The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR·) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR· generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR· generation rate. CPZ treatment did not affect CAT activity after 1–4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.  相似文献   

9.
Earlier we showed that chronic administration of engineered nanoparticles (NPs) from metals, e.g., Cu, Ag, or Al (50–60 nm, 50 mg/kg, i.p. daily for 1 week) alter blood–brain barrier (BBB) disruption and induce brain pathology in adult rats (age 18 to 22 weeks). However, effects of size-dependent neurotoxicity of NPs in vivo are still largely unknown. In present investigation, we examined the effects of different size ranges of the above-engineered NPs on brain pathology in rats. Furthermore, the fact that age is also an important factor in brain pathology was also investigated in our rat model. Our results showed that small-sized NPs induced the most pronounced BBB breakdown (EBA +480 to 680 %; radioiodine +850 to 1025 %), brain edema formation (+4 to 6 %) and neuronal injuries (+30 to 40 %), glial fibrillary acidic protein upregulation (+40 to 56 % increase), and myelin vesiculation (+30 to 35 % damage) in young animals as compared to controls. Interestingly, the oldest animals (30 to 35 weeks of age) also showed massive brain pathology as compared to young adults (18 to 20 weeks old). The Ag and Cu exhibited greater brain damage compared with Al NPs in all age groups regardless of their size. This suggests that apart from the size, the composition of NPs is also important in neurotoxicity. The very young and elderly age groups exhibited greater neurotoxicity to NPs suggests that children and elderly are more vulnerable to NPs-induced brain damage. The NPs-induced brain damage correlated well with the upregulation of neuronal nitric oxide synthase activity in the brain indicating that NPs-induced neurotoxicity may be mediated via increased production of nitric oxide, not reported earlier.  相似文献   

10.
Lead exposure is known to cause apoptotic neurodegeneration and neurobehavioral abnormalities in developing and adult brain by impairing cognition and memory. Coriandrum sativum is an herb belonging to Umbelliferae and is reported to have a protective effect against lead toxicity. In the present investigation, an attempt has been made to evaluate the protective activity of the hydroalcoholic extract of C. sativum seed against lead-induced oxidative stress. Male Wistar strain rats (100–120 g) were divided into four groups: control group: 1,000 mg/L of sodium acetate; exposed group: 1,000 mg/L lead acetate for 4 weeks; C. sativum treated 1 (CST1) group: 250 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure; C. sativum treated 2 (CST2) group: 500 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure. After the exposure and treatment periods, rats were sacrificed by cervical dislocation, and the whole brain was immediately isolated and separated into four regions: cerebellum, hippocampus, frontal cortex, and brain stem along with the control group. After sacrifice, blood was immediately collected into heparinized vials and stored at 4 °C. In all the tissues, reactive oxygen species (ROS), lipid peroxidation products (LPP), and total protein carbonyl content (TPCC) were estimated following standard protocols. An indicator enzyme for lead toxicity namely delta-amino levulinic acid dehydratase (δ-ALAD) activity was determined in the blood. A significant (p?<?0.05) increase in ROS, LPP, and TPCC levels was observed in exposed rat brain regions, while δ-ALAD showed a decrease indicating lead-induced oxidative stress. Treatment with the hydroalcoholic seed extract of C. sativum resulted in a tissue-specific amelioration of oxidative stress produced by lead.  相似文献   

11.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

12.
This work was aimed to test the hypothesis that sub-chronic administration of iron-dextran (Fe-dextran) (six doses of 50 mg Fe-dextran/kg) to rats triggers a transient oxidative stress in brain and mechanisms of cellular antioxidant defence. After 2 h of administration of the 6th dose, a significant increase of total Fe, the labile Fe pool (LIP), the lipid radical (LR?)/α-tocopherol (α-T) content ratio were observed, as compared to values in control brain homogenates. The ascorbyl radical (A?)/ascorbate (AH?) content ratio and the oxidation rate of 2′,7′-dichlorodihidrofluorescein (DCFH-DA) were significantly higher in Fe-dextran treated rats, as compared to values in brain from control rats after 4 h treatment. An increase in both catalase (CAT) and superoxide dismutase (SOD) activity was observed at 8 and 1–2 h, respectively. No significant changes were detected in the nuclear factor-κB (NF-κB) levels in nuclear extracts from rat brains after 1–8 h of Fe-dextran administration. After 2 h of Fe administration Fe concentration in cortex, striatum and hippocampus was significantly increased as compared to the same areas from control animals. Both, CAT and SOD activities were significantly increased in cortex after Fe administration over control values, without changes in striatum and hippocampus. Taken as a whole, sub-chronic Fe administration enhances the steady state concentration of Fe in the brain LIP that favors the settlement of an initial oxidative stress condition, both at hydrophilic and lipophilic compartments, resulting in cellular protection evidenced by antioxidant enzyme upregulation.  相似文献   

13.
Pregnant SD rats were exposed to ethanol (25 % (v/v) ethanol at 1.0, 2.0 or 4.0 g/kg body weight from GD8 to GD20) to assess whether ethanol-derived acetaldehyde could interact with endogenous monoamine to generate tetrahydroisoquinoline or tetrahydro-beta-carboline in the fetuses. The fetal brain concentration of acetaldehyde increased remarkably after ethanol administration (2.6 times, 5.3 times and 7.8 times as compared to saline control in 1.0, 2.0 and 4.0 g/kg ethanol-treated groups, respectively) detected by HPLC with 2,4-dinitrophenylhydrazine derivatization. Compared to control, ethanol exposure induced the formation of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal), N-methyl-salsolinol (NMSal) and 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (6-OH-MTHBC) in fetal rat brains. Determined by HPLC with electrochemical detector, the levels of dopamine and 5-hydroxytryptamine in whole fetal brain were not remarkably altered by ethanol treatment, while the levels of homovanillic acid and 5-hydroxyindole acetic acid in high dose (4.0 g/kg) of ethanol-treated rats were significantly decreased compared to that in the control animals. 4.0 g/kg ethanol administration inhibited the activity of mitochondrial monoamine oxidase (51.3 % as compared to control) and reduced the activity of respiratory chain complex I (61.2 % as compared to control). These results suggested that ethanol-induced alteration of monoamine metabolism and the accumulation of dopamine-derived catechol isoquinolines and 5-hydroxytryptamine-derived tetrahydro-beta-carbolines may play roles in the developmental dysfuction of monoaminergic neuronal systems.  相似文献   

14.
Hypobaric hypoxia (HH) induces oxidative stress (OS) and is associated with the generation of reactive oxygen species (ROS). Vitamin C is an efficient antioxidant, and it is used in a high-altitude environment to reduce the OS. The present study explores the role of vitamin C on some HH-induced changes of immune parameters in rats which were exposed to HHc condition at 18,000 ft in a simulated chamber for 8 h/day for 6 days with and without vitamin C administration at three different doses (200, 400, and 600 mg/kg body wt). The phagocytic activity of circulating blood WBC was increased, and the cytotoxic activity of splenic mononuclear cell (MNC) and the delayed type of hypersensitivity (DTH) responses to bovine serum albumin (BSA) were decreased in rats exposed to HHc condition, but these immune changes were blocked after administration of vitamin C at 400 mg/kg body wt. The leukocyte adhesive inhibition index (LAI) was not altered either in HHc condition or after administration of vitamin C in HHc condition. The serum corticosterone (CORT) concentration was increased in rats exposed to HHc condition which was blocked after administration of vitamin C (400 mg/kg body wt). The immune parameters and serum CORT concentration, however, did not show any recovery after administration of vitamin C at the dose of 200 and 600 mg/kg body wt. The present study indicates that administration of vitamin C at a dose of 400 mg/kg body wt may prevent the HH-induced immunological changes but not at the lower dose (200 mg/kg body wt) or higher dose (600 mg/kg body wt) in rats.  相似文献   

15.
The aim of this study was to compare ochratoxin A (OTA) levels in pig tissues and biological fluids after animal exposure to contaminated diet (250 μg OTA/kg of feed) during 4 weeks of fattening. OTA concentrations were quantified using a validated immunoassay method (ELISA) and high-performance liquid chromatography with fluorescence detector (HPLC-FD). The highest mean OTA concentration in pig tissues was determined in kidneys of exposed animals (13.87?±?1.41 μg/kg), followed by lungs (10.47?±?1.97 μg/kg), liver (7.28?±?1.75 μg/kg), spleen (4.81?±?0.99 μg/kg), muscle tissue (4.72?±?0.86 μg/kg), fat tissue (4.11?±?0.88 μg/kg), heart (3.71?±?1.09 μg/kg), and brain (3.01?±?0.25 μg/kg). Furthermore, on the last day of exposure (day 28), significantly higher mean OTA levels were determined in urine (16.06?±?3.09 μg/L) in comparison to serum (4.77?±?1.57 μg/L) showing that OTA urine analysis could be a good marker to identify elevated levels of this contaminant in porcine tissues used for human consumption. This study gave guidelines for the most efficient OTA control in pig-derived biological materials that can be exercised at slaughterhouses.  相似文献   

16.
An experiment with 94 growing pigs was conducted to determine the effect of a feed restriction of 25% on performance, carcass quality, organ weight, blood hormone levels and some biochemical parameters. The experiment consisted of four periods of 21 days each. In the different periods animals (initial BW about 31 kg) were fed ad libitum (A) or restrictively (R), resulting at day 84 in Groups AAAA, AARA, RAAA and RARA. During Period I, the daily gain of restrictively fed pigs (Group R) was about 22% lower than from Group A (p < 0.01). During realimentation, compensatory growth was observed in Period II for Group RA, and in Period IV for Group RARA. No compensatory growth was observed for Group AARA, which was fed restrictively in Period III only (day 43 to 63). For the whole experiment (day 1 to 84), BW gain and feed conversion amounted to 830 g/d and 3.03 kg/kg, 798 g/d and 2.99 kg/kg, 813 g/d and 2.86 kg/kg, and 800 g/d and 2.78 kg/kg for Groups AAAA, AARA, RAAA and RARA, respectively. The decrease of liver and kidney weights as a result of restricted feeding was not significant and after three weeks of realimentation these differences almost disappeared. At day 3 after realimentation of restrictively fed pigs (Group RA) the growth hormone level was significantly increased, but at day 14 of realimentation this level turned out to be lower (p < 0.01) than in pigs fed ad libitum (Group AA). This was considered as a further indication of compensatory growth.  相似文献   

17.
Gastrodin (GAS), a main constituent of a Chinese herbal medicine Tian ma, has been shown to be effective in treating various mood disorders. The purpose of the present study was to assess the effects of GAS on alleviating depressive-like behaviors in a rat model of chronic unpredictable stress (CUS) and regulating the expression of BDNF in the hippocampus and hippocampal-derived astrocyte from Sprague–Dawley (SD) rats. Following CUS, rats were intraperitoneally administered gastrodin (50, 100, or 200 mg/kg daily) or vehicle for 2 weeks. Rats were then experienced sucrose preference test and forced swim test. The expressions of GFAP and BDNF in the hippocampus were evaluated. In addition, hippocampal astrocytes were isolated from neonatal SD rats and exposed to different concentrations of GAS (sham, 5, 10, 20, 50 and 100 μg/mL) for 48 and 72 h before the cell viability and the levels of pERK1/2 and BDNF were analyzed. Furthermore, the cell viability was also tested after exposure to serum-free condition that contain different concentrations of GAS for 48 and 72 h. GAS administration (100 and 200 mg/kg daily) reversed depressive-like behaviors in rats exposed to CUS paradigm and restored the expression of GFAP and BDNF in the hippocampus. Moreover, in vitro experiments revealed that GAS did not increase the cell viability of astrocytes but protected it from 72 h’s serum-free damage at the dosage 20 μg/mL. Increased levels of ERK1/2 phosphorylation and BDNF protein were also observed after GAS (20 μg/mL) treatment for 72 h. These results indicate that gastrodin possesses antidepressant effect. The changes of the astrocyte activation and the level of BDNF may play a critical role in the pharmacological action of GAS.  相似文献   

18.
This study investigated the effect of quercetin on nucleoside triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes from cerebral cortex of adult rats exposed to cadmium (Cd). Rats were exposed to Cd (2.5 mg/Kg) and quercetin (5, 25 or 50 mg/Kg) by gavage for 45 days. Rats were randomly divided into eight groups (n = 8–10): saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. Results demonstrated that AChE activity increased in the Cd/ethanol group when compared to saline/ethanol group. Treatment with quercetin prevented the increase in AChE activity when compared to Cd/ethanol group. Quercetin treatment prevented the cadmium-induced increase in NTPDase, 5-nucleotidase, and ADA activities in Cd/ethanol group when compared to saline/ethanol group. Our data showed that quercetin have a protector effect against Cd intoxication. This way, is a promising candidate among the flavonoids to be investigated as a therapeutic agent to attenuate neurological disorders associated with Cd intoxication.  相似文献   

19.
Poor development and differentiation of three layered cytoarchitectural pattern of brain, degenerating pyramidal cells with pyknotic nuclei and substantial loss of both large and small pyramidal cells of the hippocampal CA1 region were observed in fetuses of pregnant Charles-Foster rats exposed to single high dose of haloperidol (50 mg/kg body weight) on day 12 of gestation. In treated striatum, reduction in size, complete degeneration of multipolar cells with fragmented nuclei and increased extracellular spaces were observed. Unsacrificed group of day 12 haloperidol treated rat offsprings at 9 weeks of age exhibited cognitive behavioural dysfunctions in passive avoidance (behaviour) test. These findings indicate that a single (high dose) prenatal haloperidol exposure during critical period of CNS development not only induces micromorphological aberrations in foetal hippocampus and striatum but also lasting cognitive impairment in adult rat offsprings.  相似文献   

20.
Primary exposure to a hormone (hormonal imprinting) alters--in the case of the Tetrahymena increases--cellular response to re-exposure(s) to the same hormone. The intensity of hormonal imprinting depends on the phase of the cell cycle in which the primary exposure has taken place. The effect of imprinting was greater on the cells exposed to the hormone in phase G1 than on those exposed in phase S or G2. The response pattern of the progeny generations corresponded to that of the primarily exposed (imprinted) ancestor cell, irrespective of their own pre-exposure in phase G1, G2 or S of their cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号