首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine structure of germinatingPenicillium megasporum conidia   总被引:1,自引:0,他引:1  
Summary Penicillium megasporum conidia have spore walls consisting of several layers. There is no visible change in the outer wall layers during spore germination, but the inner layers increases in thickness on only one side of the spore, resulting in a rupture of the outer wall layers and subsequently in germ tube formation. Invaginations in the plasma membrane disappear as the germ tube forms and emerges, and the nucleus migrates into the developing germ tube. Mitochondria gather at the base of the germ tube during its formation. During germination, the amount of lipid in the spore decreases and portions migrate into the germ tube. Membrane-bound, electron dense bodies are present in resting spores. These bodies decrease in size as germination proceeds, and the cytoplasm in the developing germ tube appears much more electron dense than the cytoplasm within the spore.  相似文献   

2.
Summary The fine structure of ungerminated and aerobically germinated sporangiospores of Mucor rouxii was compared. The germination process may be divided into two stages: I, spherical growth; II, emergence of a germ tube. In both stages, germination is growth in its strictest sense with overall increases in cell organelles; e.g., the increase in mitochondria is commensurate with the overall increase in protoplasmic mass. Noticeable changes occurring during germination are the disappearance of electron-dense lipoid bodies, formation of a large central vacuole and, most strikingly, formation of a new cell wall. Unlike many other fungi, M. rouxii does not germinate by converting the spore wall into a vegetative wall. Instead, as in other Mucorales, a vegetative wall is formed de novo under the spore wall during germination stage I. This new wall grows out, rupturing the spore wall, to become the germ tube wall. Associated with the apical wall of the germ tube is an apical corpuscle previously described. The vegetative wall exhibits a nonlayered, uniformly microfibrillar appearance in marked distinction to the spore wall which is triple-layered, with two thin electron dense outer layers, and a thick transparent inner stratum. The lack of continuity between the spore and vegetative walls is correlated with marked differences in wall chemistry previously reported. A separate new wall is also formed under the spore wall during anaerobic germination leading to yeast cell formation. On the other hand, in the development of one vegetative cell from another, such as in the formation of hyphae from yeast cells, the cell wall is structurally continuous. This continuity is correlated with a similarity in chemical composition of the cell wall reported earlier.  相似文献   

3.
Germination of the sporangiospore of Piptocephalis unispora Benjamin, observed by means of light and electron microscopy, involved the formation of a new inner wall which became continous with the inner layer of the wall of the germ tube. The outer wall layer of the germ tube was continous with the original inner wall layer of the dormant spore. Preliminary details of appressorium structure were noted. Nutritional experiments indicated that sporangiospores required external sources of utilisable nitrogen and carbon compounds for maximal swelling and germ tube production. Limited development occurred when either nutrient was supplied singly. Comparison of germination of the asexual spore with that in other Mucorales, especially the Kickxellaceae, has been made, and the merosporangial status in P. unispora discussed.Non-Standard Abbreviations CH casein hydrolysate - Q spore quotient  相似文献   

4.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

5.
The fine structure during the formation and germination of resting spores of Entomophthora virulenta is described. There were many microbodies in contact with oil droplets, and the microbodies appeared to participate in spore germination. The mature resting spore had an epispore layer with two regions and an endospore layer with five regions. Dictyosomes, numerous vesicles, and lomasomes were produced during the formation of the endospore layer. Prior to spore germination, the single large oil droplet separated into numerous small oil droplets, and the new cell wall was formed beneath the endospore layer which gradually disintegrated possibly by enzymatic actions. The germ tube perforated the epispore layer mainly by mechanical pressure.  相似文献   

6.
YOUNG  T. W. K. 《Annals of botany》1971,35(1):183-191
Carbon replicas of germinating sporangiospores of Linderinapennispora show the outer wall complex to break open basally,during the phase of swelling, and the surface of the germ tubeto be smooth. Chemical treatment reveal the microfibrillar wallof the germ tube to be continuous with the microfibrillar innerwall complex of the spore. Microfibrils of the germ tube arerandornly arranged and appear to be finer than those of thespore wall. Ultra-thin sections reveal the wall of the germtube to consist of an outer electron-dense layer and an innermicrofibrillar electron-transparent layer and both layers originatein the basal region of the spore between the plasmalemma andthe inner wall complex of the spore.  相似文献   

7.
The germination of ascospores of the marine fungusHalosphaeria appendiculata was investigated with transmission electron microscopy. Prior to germination, settled ascospores became surrounded by a fibro-granular layer. Small, membrane-bounded vesicles and larger electron-dense membrane-bounded vesicles aggregated at the site of germ tube formation where the plasmalemma adjacent to the aggregation was convoluted. The vesicles appeared to fuse with the plasmalemma, releasing their contents. Enzymatic digestion of the spore wall probably occurred at the time of germ tube emergence. After the nucleus had migrated into the newly formed germ tube, a septum was formed to delimit the germ tube from the ascospore. The growing germ tube can be divided into 3 morphological regions, namely the apical, sub-apical and vacuolated regions, and is typical of other fungi. A mucilaginous sheath was associated with the older mycelium. The germ tube displaced the polar appendage, and the ascospore, germ tube and appendage were enclosed in a mucilaginous sheath. In ascospores which subtended old germ tubes, the nucleus and lipid body became irregular in shape and the cytoplasm was more vacuolated. Microbody-like structures remained associated with the lipid throughout development, and were present in old ascospores.  相似文献   

8.
The ultrastructure and development of Bacillus penetrans in root-knot nematodes, Meloidogyne spp., was studied with a transmission electron microscope. Host infection was by a germ tube from the cup-shaped sporangium containing the endospore. The prokaryotic vegetative cells contained septa formed by an ingrowth of the inner layer of the trilaminate cell wall and were associated with mesosomes. Structure of the endospore was similar to other bacteria with a spore protoplast enclosed within two cortical layers and three spore coats. An exosporium which may function in attachment and host specificity surrounded the endospore. Ultrastructural changes accompanying sporulation were similar to those reported for other endospore-forming bacteria but with some parasite specialization. The filamentous vegetative growth was characteristic of some Actinomycetales. Endospore development at the apices of dichotomously branched filaments of the thallus resembled the genus Actinobifida.  相似文献   

9.
The fine structure of released, attached, and germinating carpospores of Porphyra variegata (Kjellm.) Hus is described. Adhesive vesicles, formed during sporogenesis and discharged upon settling of the spore, produced a layer of adhesive mucilage around the spore and filled a deep imagination on the spore's ventral side. The mucilage layer was punctured by the emergence of a germ tube. Both spore and germ tube were lined by newly deposited cell wall. Germination was accompanied by vacuolation and starch mobilization. The morphological development of the sporeling was not noticeably influenced by the great variability of the timing, location, and orientation of septum formation. The attached carpospore possessed a plastid like that of gametophyte cells: stellate with one large central pyrenoid and no peripheral encircling thylakoids. Cells of mature vegetative cells of the conchocelis had plastids that were elongate and parietal and had multiple pyrenoids and encircling thylakoids. Most stages in the transition between the two forms of plastids occurred during carpospore germination.  相似文献   

10.
Glomus caledonium accession UK301 from Rothamsted, England was designated a living reference culture of the species based on close correspondence of spore morphological characters with those of preserved holotype (Farlow Herbarium) and paratype (Oregon State University) specimens. Morphological characters were defined and interpreted according to their origin and sequence in spore differentiation. Three discrete stages were discriminated by simultaneous appearance of new layers in the spore wall and in the wall of the subtending hypha. An outer mucilaginous layer nonreactive in Melzer's reagent and a more rigid hyaline layer were present initially in the most juvenile spore wall, followed by de novo formation of a granular layer and and a yellow-brown laminate layer. Spore wall differentiation terminated with the innermost sublayer of the laminate layer occluding the hyphal pore. A germ tube, when present, originated in the lumen of the subtending hypha near the occluding sublayer. A preserved voucher of an isolate from France and a living culture from Denmark possessed corresponding subcellular characters to those of isolate UK301, thus establishing definitive morphological criteria to group different geographic isolates of the species.  相似文献   

11.
Summary In germinated sporangiospores of Gilbertella persicaria, negatively contrasted fibrils, 20–70 Å diam, are seen in thin sections of the inner vegetative wall that is continuous with the germ tube wall. The fibrils are randomly oriented in a loose network in this wall and in the germ tube wall. Germ tubes have an additional surface layer of fine, positively contrasted fibrils which appear as a nap-like coating on the hyphae. Patterns of wall fibril orientation are not revealed by transverse sections of spore and germ tube walls, whereas oblique and tangential sections are favorable for examining cell wall architecture in situ. Staining patterns show textural and compositional differences among various wall layers.  相似文献   

12.
A monoclonal antibody was obtained from BALB/c mice immunized with Penicillium frequentans mycelium. The specificity of the antibody was evaluated by enzyme-linked immunosorbent and indirect immunofluorescence assays against the same mycelium. This IgM antibody cross-reacted with various strains of the Penicillium and Aspergillus genera. By indirect immunofluorescence assays, the antibody was able to stain about 10% of Penicillium and Aspergillus conidia, but major part of conidia did not absorb the fluorescence-labeled antibody before swelling. During germination of P. frequentans conidia, the germ tube wall which constitutes a continuation of an inner wall layer was also stained. During germination of P. griseofulvum, the protrusion of the germ tube wall was not always recognized by the antibody because the germ tube wall was constituted by a continuation of an outer spore wall layer. The study of the staining patterns of the spores and the protrusions suggests that the antibody specifically recognizes an antigen of the inner spore wall layer. The monoclonal antibody reacts with extracellular galactomannans produced by genera Aspergillus and Penicillium but is not directed against beta-(1,5)-linked galactofuranose units.  相似文献   

13.
《Fungal biology》2023,127(9):1291-1297
Many species of medically important fungi are prolific in the formation of asexual spores. Spores undergo a process of active swelling and cell wall remodelling before a germ tube is formed and filamentous growth ensues. Highly elongated germ tubes are known to be difficult to phagocytose and pose particular challenges for immune phagocytes. However, the significance of the earliest stages of spore germination during immune cell interactions has not been investigated and yet this is likely to be important for defence against sporogenous fungal pathogens. We show here that macrophages restrict the early phases of the spore germination process of Aspergillus fumigatus and Mucor circinelloides including the initial phase of spore swelling, spore germination and early polarised growth. Macrophages are therefore adept at retarding germination as well as subsequent vegetative growth which is likely to be critical for immune surveillance and protection against sporulating fungi.  相似文献   

14.
A major structural element of bacterial endospores is a peptidoglycan (PG) wall. This wall is produced between the two opposed membranes surrounding the developing forespore and is composed of two layers. The inner layer is the germ cell wall, which appears to have a structure similar to that of the vegetative cell wall and which serves as the initial cell wall following spore germination. The outer layer, the cortex, has a modified structure, is required for maintenance of spore dehydration, and is degraded during spore germination. Theories suggest that the spore PG may also play a mechanical role in the attainment of spore dehydration. Inherent in one of these models is the production of a gradient of cross-linking across the span of the spore PG. We report analyses of the structure of PG found within immature, developing Bacillus subtilis forespores. The germ cell wall PG is synthesized first, followed by the cortex PG. The germ cell wall is relatively highly cross-linked. The degree of PG cross-linking drops rapidly during synthesis of the first layers of cortex PG and then increases two- to eightfold across the span of the outer 70% of the cortex. Analyses of forespore PG synthesis in mutant strains reveal that some strains that lack this gradient of cross-linking are able to achieve normal spore core dehydration. We conclude that spore PG with cross-linking within a broad range is able to maintain, and possibly to participate in, spore core dehydration. Our data indicate that the degree of spore PG cross-linking may have a more direct impact on the rate of spore germination and outgrowth.  相似文献   

15.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

16.
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.  相似文献   

17.
During germination, Streptomyces antibioticus arthrospores passed through stages: darkening, swelling and germ tube emergence. The first stage, darkening, whose main features were a decrease in absorbance and a loss of refractility, only required exogenous divalent cations (Ca2+, Mg2+ or Fe2+) and energy that can be obtained from the spore reserves. This stage was blocked by agents that inhibit ATP formation but not by antibiotics that inhibit macromolecular synthesis. The second stage, swelling, needed an exogenous carbon source and was not blocked by mitomycin C. In this stage, the spores exhibited the highest cytochrome oxidase and catalase activities and respiratory quotient. The last stage, germ tube emergence, required additional carbon and nitrogen sources. Ammonium compounds were superior to nitrate. Dry weight remained constant during the stages of darkening and swelling, with a rapid increase from the moment of germ tube emergence. Optimum pH and temperature for germination were 8.0 and 45 degrees C, respectively. Heat treatment (55 degrees C for 10 min) had no effect on germination. The fine structure of the spore underwent important changes during germination. The wall of the swollen spore became stratified and the inner layer was continuous with the germ tube wall. Macromolecular synthesis occurred in the sequence RNA, protein and then DNA. Rifampicin, streptomycin and mitomycin C prevented synthesis when added at the start of incubation. The same effect was obtained if the addition was made during germination, except with mitomycin C which inhibited DNA, but not RNA and protein synthesis.  相似文献   

18.
Electron microscope observations were made of the Australian and U.S. strains of Culicinomyces clavisporus infecting mosquito larvae. The wall of the conidium is composed of an inner (primary) layer, an outer (secondary) layer, and an exterior coating of a mucopolysaccharide substance believed responsible for conidial adhesion to the host cuticle prior to germination and penetration. In some instances the wall of the conidium is ruptured during germination and new wall layers and mucoid coating form around the germ tube whereas in other specimens the conidial wall layers extend around the germ tube without fracturing. The most common invasion site is through the larval foregut following ingestion of conidia. The apex of the germ tube presses tightly against the surface of the foregut cuticle and the mucilaginous coating is stripped away. There is evidence to suggest that the host epicuticle, which disappears across the zone of contact with the germ tube, is utilized for nutrition of the invading fungus. A collar of cuticle forms around the germ tube apex and a narrow penetrant hyphae extends into the procuticle. It is believed that cuticular penetration is primarily enzymatic assisted by mechanical pressure. The penetrant hypha swells into an oval cell in the hypodermal region and vegetative hypha then invade the hemocoel. The cells of the hypodermis develop signs of degeneration presumably due to the secretion of toxic substances from the invading hyphae. Host reactions, involving melanization of the host tissues, are sometimes evident among the invading penetrant hyphae in the cuticle or in the hypodermal cells in contact with the fungus. Melanized capsules form around some of the hyphae within the hemocoel. These latter reactions do not directly involve host blood cells and are examples of “humoral encapsulation” similar to that described by other authors during invasion of pathogenic organisms into mosquito larvae and chironomid larvae.  相似文献   

19.
Summary The formation of cell walls during the appressorium formation inColletotrichum lagenarium was observed by electron microscope on the materials prepared by replicas and sectioning. The outer layer of conidia cell walls ruptured at the time of germination and the inner layer bulged out to form a germ tube. The germ tubes and primordia of appressoria had smooth surface and were consisted of one-layered cell wall. However, as the appressorium matured, the electron dense materials appeared on the outer surface of the cell wall which grew into granules. These granules are believed to form the outer layer of appressoria. The under side of the appressorium in contact with the glass surface showed a round pore.Contribution No. 191.  相似文献   

20.
Summary The fine structure of resting and germinating conidia ofPenicillium chrysogenum has been examined by electron microscopy. In addition to enlargement of the cells, a number of changes in ultrastructure become evident as morphogenesis proceeds. The newly synthesized germ tube is continuous with the corresponding layers of the conidial wall. Some conidial wall layers, however, do not extend into the hyphal wall. Several sections showing initial septum synthesis suggest that a septal pore is not a necessary structural entity. A characteristic orientation of the initial septum formed after germination is described. Aside from numerical considerations, no significant changes occur in nuclei, mitochondria, or ribosomes. The electron micrographs illustrate the presence of spherosomes, lomasomes, and nucleoli; the possible significance of these structures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号