首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formaldehyde-induced formation of tightly bound RNA-protein complexes of rod-like plant viruses was studied. The preparations of tobacco mosaic virus and closely related cucumber virus 4 were incubated with 1.5% formaldehyde for 20-50 hrs at 50 degrees C. Then the viral particles were disrupted, free protein was removed and viral RNA was centrifuged in the linear gradient of Cs2SO4. The RNAs from the formaldehyde-untreated viruses and RNA from the formaldehyde-treated tobacco masaic virus had the density of 1.65-1.66 g/cm3, while RNA from the formaldehyde-treated cucumber virus had the density of 1.57-1.42 g/cm3, depending on the incubation time. This is indicative of the protein binding to RNA. Treatment of the cucumber virus complex with pronase resulted in a liberation of free RNA with the density of 1.66 g/cm3; incubation for 2 min at 100 degrees C in a dissociating mixture (2% sodium dodecyl sulfate + 0.2% mercaptoethanol) did not cause the dissociation of the complex. Polyacrylamide gel electrophoresis showed that the most part of the protein molecules are bound within the complex not by covalent protein-protein cross-links.  相似文献   

2.
The location of RNA in cucumber green mottle mosaic virus and tobacco mosaic virus protein disks was visualized by a negative staining method as a narrow ring localized at a radius of 4 nm, which corresponds to the location of RNA obtained by X-ray diffraction studies of tobacco mosaic virus. The same ring-shaped stains were observed in the end views of helical rods prepared in acidic solutions from viral protein without RNA. Since such a ring-shaped image could not be observed in end views of natural particles and reconstituted particles composed of protein and RNA, the narrow ring was concluded to indicate the RNA location on the basis of X-ray analysis.  相似文献   

3.
The complete nucleotide sequence of Chinese rape mosaic virus has been determined. The virus is a member of the tobamovirus genus of plant virus and is able to infect Arabidopsis thaliana (L.) Heynh systemically. The analysis of the sequence shows a gene array that seems to be characteristic of crucifer tobamoviruses and which is slightly different from the one most frequently found in tobamoviruses. Based on gene organization and on comparisons of sequence homologies between members of the tobamoviruses, a clustering of crucifer tobamoviruses is proposed that groups the presently known crucifer tobamovirus into two viruses with two strains each. A name change of Chinese rape mosaic virus to oilseed rape mosaic virus is proposed.Abbreviations 2-ME 2-mercaptoethanol - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - UTR untranslated region - MP movement protein - CP capsid protein - CRMV Chinese rape mosaic virus - TVCV turnip vein clearing virus - PaMMV paprika mild mottle virus - PMMV-I pepper mild mottle virus (Italian isolate) - PMMV-S pepper mild mottle virus (Spanish isolate) - ToMV tomato mosaic virus - TMV tobacco mosaic virus - TMGMV tobacco mild green mosaic virus - ORSV odontoglossum ringspot virus - SHMV sunn hemp mosaic virus - CGMMV cucumber green mottle mosaic virus - ORMV oilseed rape mosaic virus  相似文献   

4.
The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses — cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2% with the protein from brome mosaic virus and cucumber mosaic virus, respectively. These results suggest that the three plant viruses are evolutionarily related, although, the evolutionary distance between alfalfa mosaic virus and cucumber mosaic virus or brome mosaic virus is much larger than the corresponding distance between the latter two viruses.  相似文献   

5.
The replication-associated proteins encoded by Cucumber mosaic virus (CMV), the 1a and 2a proteins, were detected by immunogold labeling in two host species of this virus, tobacco (Nicotiana tabacum) and cucumber (Cucumis sativus). In both hosts, the 1a and 2a proteins colocalized predominantly to the vacuolar membranes, the tonoplast. While plus-strand CMV RNAs were found distributed throughout the cytoplasm by in situ hybridization, minus-strand CMV RNAs were barely detectable but were found associated with the tonoplast. In both cucumber and tobacco, 2a protein was detected at higher densities than 1a protein. The 1a and 2a proteins also showed quantitative differences with regard to tissue distributions in tobacco and cucumber. About three times as much 2a protein was detected in CMV-infected cucumber tissues as in CMV-infected tobacco tissues. In tobacco, high densities of these proteins were observed only in vascular bundle cells of minor veins. In contrast, in cucumber, high densities of 1a and 2a proteins were observed in mesophyll cells, followed by epidermis cells, with only low levels being observed in vascular bundle cells. Differences were also observed in the distributions of 2a protein and capsid protein in vascular bundle cells of the two host species. These observations may represent differences in the relative rates of tissue infection in different hosts or differences in the extent of virus replication in vascular tissues of different hosts.  相似文献   

6.
Espinha LM  Gaspar JO 《Cytobios》1999,100(394):119-126
Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.  相似文献   

7.
8.
The interaction in vitro of the RNA of the Q-strain of cucumber mosaic virus (CMV) with its satellite RNA (sat-RNA) has been studied. In hybridisation reactions containing 30% formamide at 45 degrees, sat-RNA binds to CMV RNA 3 and 4 but not to CMV RNA 1 and 2 or RNA from tobacco mosaic virus and alfalfa mosaic virus. The viral coat protein gene present in RNA 3 and 4 contains the site of binding but this region does not contain complementary sequences of any significant length to the sat-RNA sequence. However, the optimum alignment of short complementary sequences present in these regions revealed a stable structure in which it is proposed that sat-RNA twists around the coat protein gene so that two separate blocks of nucleotides in sat-RNA base pair in opposite directions with two adjacent blocks in the coat protein gene to form a knot-like structure. The binding site is a region of 33 nucleotides within the coding region of the coat protein gene which base pairs with residues 98-113 and 134-152 of sat-RNA. The possibility of the binding region of sat-RNA functioning as an "anti-sense" sequence in regulation of the viral coat protein synthesis is discussed.  相似文献   

9.
Plant virus-encoded movement proteins promote viral spread between plant cells via plasmodesmata. The movement is assumed to require a plasmodesmata targeting signal to interact with still unidentified host factors presumably located on plasmodesmata and cell walls. The present work indicates that a ubiquitous cell wall-associated plant enzyme pectin methylesterase of Nicotiana tabacum L. specifically binds to the movement protein encoded by tobacco mosaic virus. We also show that pectin methylesterase is an RNA binding protein. These data suggest that pectin methylesterase is a host cell receptor involved in cell-to-cell movement of tobacco mosaic virus.  相似文献   

10.
The structure of an intact tobacco mosaic virus (TMV) particle was determined at 2.9 A resolution using fibre diffraction methods. All residues of the coat protein and the three nucleotides of RNA that are bound to each protein subunit were visible in the electron density map. Examination of the structures of TMV, cucumber green mottle mosaic virus and ribgrass mosaic virus, and site-directed mutagenesis experiments in which carboxylate groups were changed to the corresponding amides, showed that initial stages of disassembly are driven by complex electrostatic interactions involving at least seven carboxylate side-chains and a phosphate group. The locations of these interactions can drift during evolution, allowing the viruses to evade plant defensive responses that depend on recognition of the viral coat protein surface.  相似文献   

11.
Binding of the oligoribonucleotides AAG, AAGAAG and AAGAAGUUG to the disk aggregate of tobacco mosaic virus coat protein has been studied in solution under conditions favourable for virus assembly. The two longer oligomers bind strongly with Kd around 1 microM, approach complete saturation of binding sites and cause the formation of long, nicked helical rods resembling the virus. It is suggested that the binding of these oligomers, with sequences chosen from the assembly origin of the viral RNA, simulates the tobacco mosaic virus assembly process. No binding could be detected for AAG, indicating that chain length is a crucial determinant in the interaction. The binding of AAGAAG to coat protein crystals is very much weaker than that observed in solution, and the crystals crack at high oligomer concentrations. The corresponding oligodeoxyribonucleotide, d(AAGAAG), shows no binding to the protein in solution; the interaction is extremely specific for RNA.  相似文献   

12.
13.
The p30 movement protein (MP) is essential for cell-to-cell spread of tobacco mosaic virus in planta. We used anion-exchange chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to obtain highly purified 30-kDa MP, which migrated as a single band in native PAGE. Analytical ultracentrifugation suggested that the protein was monodisperse and dimeric in the nonionic detergent n-octyl-beta-D-glucopyranoside. Circular dichroism (CD) spectroscopy showed that the detergent-solubilized protein contained significant alpha-helical secondary structure. Proteolysis of the C-tail generated a trypsin-resistant core that was a mixture of primarily monomers and some dimers. We propose that MP dimers are stabilized by electrostatic interactions in the C terminus as well as hydrophobic interactions between putative transmembrane alpha-helical coiled coils.  相似文献   

14.
Fiber diffraction patterns have been obtained for cucumber green mottle mosaic virus, watermelon strain (a distant relative of tobacco mosaic virus), and two heavy-atom derivatives. These patterns and the similarity between the cucumber and the tobacco virus offer the potential of a full structure determination of the cucumber virus.  相似文献   

15.
A study was performed on the interaction of cucumber mosaic virus (CMV) of potato virus Y (PVY) with tobacco mosaic virus (TMV). Interference was evaluated using tobacco plantsNicotiana tabacum cv. Java responding to CMV and PVY with a systemic infection and to TMV with local necrotic lesions. The decrease in TMV — induced lesion number gave evidence of a decrease in susceptibility caused by the previous infection with CMV or PVY, the decrease of lesion enlargement demonstrated a decreased TMV reproduction in the plants previously infected with CMV or PVY. The interference concerned was incomplete, as evaluated from reproduction of the challenging TMV and from the decrease in susceptibility of the host to TMV brought about by the first infection with CMV or PVY.  相似文献   

16.
The expression of viral coat protein (CP) in transgenic plants has been shown to be very effective in virus plant protection. However, the introduction of CP genes into plants presents the potential risk of the encapsidation of a superinfecting viral genome in the transgenic protein, an event which could change the epidemiology of the disease. To detect the potential heterologous encapsidation of the cucumber mosaic virus (CMV) genome by alfalfa mosaic virus (AIMV) CP expressed in transgenic tobacco plants, a system of immunocapture (IC) and amplification by polymerase chain reaction (PCR) was optimized. This provided high sensitivity and reliable selection of the heterologously encapsidated CMV genome in the presence of natural CMV particles. As little as 2 pg of virus could be detected by immunocapture/polymerase chain reaction (IC/PCR) technique. Evidence for heterologous encapsidation of the CMV genome was found in 11 of the 33 transgenic plants tested two weeks after CMV inoculation. This demonstrates a significant rate of heterologous encapsidation events between two unrelated viruses in transgenic plants. Since CP is involved in the interactions of the virus particle with its vector, the release in the field of such transgenic plants could alter the transmission properties of some important viruses.  相似文献   

17.
The in vitro assembly reaction of tobacco mosaic virus (TMV), especially the elongation process of partially reconstituted RNA (PRR) by protein subunits, was observed by electron microscopy. After addition of TMV-protein subunits, the PRR appeared as rods with a clump at one end, believed to be a complex between added protein subunits and the RNA tail protruding from PRR. The subunits entrapped on the RNA tails in the forms of clumps were progressively incorporated into the growing rods on incubation, ending with the formation of completely reconstituted rods. The clumps were also observed after addition of cucumber green mottle mosaic virus (CGMMV) protein subunits to rods partially reconstituted from RNA and TMV-protein. In this case, the protein subunits, seen as clumps, did not become incorporated to form elongating rods. An improved model for the elongation of TMV rods is proposed. The elongation process is composed of two steps, with the first step being the interaction of protein subunits with the RNA tail protruding from the growing rod. Any protein having a specific binding site for TMV-rna, not limited to TMV-protein, will react in the first step. The second step is the incorporation of the protein on the RNA tail into a rod-shaped structure, with consequent elongation of the growing rod. It appears that only protein homologous with that in the partially reconstituted rods can partake in the second step.  相似文献   

18.
《Seminars in Virology》1993,4(6):357-361
Transgenic tobacco plants (CP +) that express the coat protein gene of cucumber mosaic virus (CMV)-Y strain were highly protected from infection with either CMV virions or CMV RNA, while transgenic protoplasts were also protected from infection with CMV virions but not with CMV RNA. CP + plants showed greater susceptibility to infection with satellite RNA-free CMV-Y than CMV-Y containing satellite RNA. At temperatures above 30°C, CP + plants did not or poorly resist infection with CMV. Elevated temperature affected the accumulation of CP rather than its mRNA, suggesting that CP molecules are mainly involved in virus resistance in CP + plants.  相似文献   

19.
Secondary structure of tobacco mosaic virus protein   总被引:1,自引:0,他引:1  
A set of rules is proposed for the prediction of α-helices in proteins. These rules lead to the correct assignment to either helical or non-helical regions of over 80% of the amino acid residues in the proteins from which they are derived. Applied to tobacco mosaic virus protein these rules lead to the prediction of five α-helical regions which may be consistent with other data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号