首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Complementary packing of alpha-helices in proteins   总被引:10,自引:0,他引:10  
Efimov AV 《FEBS letters》1999,452(1-2):3-6
  相似文献   

4.
5.
J Feng  B Liu  Z Zhang  Y Ren  Y Li  F Gan  Y Huang  X Chen  P Shen  L Wang  B Tang  XF Tang 《PloS one》2012,7(7):e41621
Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N(2)O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea.  相似文献   

6.
Deep Lake in Antarctica is a cold, hypersaline system where four types of haloarchaea representing distinct genera comprise >70% of the lake community: strain tADL ∼44%, strain DL31 ∼18%, Halorubrum lacusprofundi ∼10% and strain DL1 ∼0.3%. By performing comparative genomics, growth substrate assays, and analyses of distribution by lake depth, size partitioning and lake nutrient composition, we were able to infer important metabolic traits and ecophysiological characteristics of the four Antarctic haloarchaea that contribute to their hierarchical persistence and coexistence in Deep Lake. tADL is characterized by a capacity for motility via flagella (archaella) and gas vesicles, a highly saccharolytic metabolism, a preference for glycerol, and photoheterotrophic growth. In contrast, DL31 has a metabolism specialized in processing proteins and peptides, and appears to prefer an association with particulate organic matter, while lacking the genomic potential for motility. H. lacusprofundi is the least specialized, displaying a genomic potential for the utilization of diverse organic substrates. The least abundant species, DL1, is characterized by a preference for catabolism of amino acids, and is the only one species that lacks genes needed for glycerol degradation. Despite the four haloarchaea being distributed throughout the water column, our analyses describe a range of distinctive features, including preferences for substrates that are indicative of ecological niche partitioning. The individual characteristics could be responsible for shaping the composition of the haloarchaeal community throughout the lake by enabling selection of ecotypes and maintaining sympatric speciation.  相似文献   

7.
8.
Lateral gene transfer (LGT) plays an important role in the molecular evolution of haloarchaea. Polyethylene glycol-mediated LGT in haloarchaea has been demonstrated in the laboratory, yet few explanations have been put forward for the apparently common, natural occurrence of plentiful plasmids within haloarchaeal cells. In this study, LGT was induced in two genera of haloarchaea, Haloferax and Halorubrum, by modification of salt concentration of media-a factor that may vary naturally in native haloarchaeal habitat. Minimal growth salt concentrations (MGSCs) of four strains of haloarchaea from these two genera were established, and transformations using two circular double-stranded DNAs (dsDNAs), pSY1 and pWL102, were then produced in media at strain-appropriate MGSCs. The four strains of haloarchaea were transformed successfully by both kinds of dsDNAs with an efficiency of 10(2)-10(3) transformants per microgram dsDNA. The transformation under reduced salt concentration may be an imitation of natural LGT of dsDNA into haloarchaea when salinity in normally hypersaline environments is altered by sudden introduction of fresh water-for example, by rainfall, snow-melt, or flooding-providing a reasonable interpretation for haloarchaea being naturally richer in plasmids than any other known organisms.  相似文献   

9.
Although Arabidopsis is well established as the premiere model species in plant biology, rice (Oryza sativa) is moving up fast as the second-best model organism. In addition to the availability of large sets of genetic, molecular, and genomic resources, two features make rice attractive as a model species: it represents the taxonomically distinct monocots and is a crop species. Plant structural genomics was pioneered on a genome-scale in Arabidopsis and the lessons learned from these efforts were not lost on rice. Indeed, the sequence and annotation of the rice genome has been greatly accelerated by method improvements made in Arabidopsis. For example, the value of full-length cDNA clones and deep expressed sequence tag resources, obtained in Arabidopsis primarily after release of the complete genome, has been recognized by the rice genomics community. For rice >250,000 expressed sequence tags and 28,000 full-length cDNA sequences are available prior to the completion of the genome sequence. With respect to tools for Arabidopsis functional genomics, deep sequence-tagged lines, inexpensive spotted oligonucleotide arrays, and a near-complete whole genome Affymetrix array are publicly available. The development of similar functional genomics resources for rice is in progress that for the most part has been more streamlined based on lessons learned from Arabidopsis. Genomic resource development has been essential to set the stage for hypothesis-driven research, and Arabidopsis continues to provide paradigms for testing in rice to assess function across taxonomic divisions and in a crop species.  相似文献   

10.
11.
12.
The initial human and chimpanzee genome sequences have been published, and additional primate genomes, including those of gorilla and orang-utan, are in progress. With these new resources, we can now address what makes our species unique, by focusing on the underlying genetic differences associated with phenotypes. Comparative primate population genomics, including studies of structural changes, mobile elements, gene expression and functional analyses, will shed light on how natural selection and population demography are involved in the processes that lead to differences among great apes. Historically, this research has focused on the human perspective; however, we will learn much about ourselves with a focus on genomic diversity in hominoids as a group.  相似文献   

13.
14.
The genus Lactobacillus is a diverse group that includes many species used in food production and preservation. Some lactobacilli are considered probiotic, conferring health benefits upon the host. The heterogeneity of this genus poses challenges and opportunities when characterizing or exploiting individual strains. To date, 10 Lactobacillus genome sequences have been published, and at least 11 more sequencing projects are ongoing. These studies will dramatically improve one's understanding of metabolic processes, bioprocessing capabilities and potential roles in health and well-being of the Lactobacilli. This review describes the current status of Lactobacillus genome sequence projects, highlights the major findings and summarizes functional genomics or comparative genomics studies. The genomic basis for the unusual diversity of this genus is discussed, and the potential for comparative genomics to rigorously extend phylogenetic analysis of the Lactobacilli is described.  相似文献   

15.
With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collection of whole sequenced genomes to the study of functional genomics. Reverse genetic approaches have been used for many years to advance from sequence data to the resulting phenotype in an effort to deduce the function of a gene in the species of interest. Many of the currently used approaches (RNAi, gene knockout, site-directed mutagenesis, transposon tagging) rely on the creation of transgenic material, the development of which is not always feasible for many plant or animal species. TILLING is a non-transgenic reverse genetics approach that is applicable to all animal and plant species which can be mutagenized, regardless of its mating / pollinating system, ploidy level, or genome size. This approach requires prior DNA sequence information and takes advantage of a mismatch endonuclease to locate and detect induced mutations. Ultimately, it can provide an allelic series of silent, missense, nonsense, and splice site mutations to examine the effect of various mutations in a gene. TILLING has proven to be a practical, efficient, and an effective approach for functional genomic studies in numerous plant and animal species. EcoTILLING, which is a variant of TILLING, examines natural genetic variation in populations and has been successfully utilized in animals and plants to discover SNPs including rare ones. In this review, TILLING and EcoTILLING techniques, beneficial applications and limitations from plant and animal studies are discussed.Key Words: Reverse genetics, functional genomics, TILLING (target induced local lesions in genomes), EcoTILLING (Ecotype TILLING), sequencing, SNP (single nucleotide polymorphism), genetic stocks.  相似文献   

16.
17.

Background  

The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT) of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches.  相似文献   

18.
19.
The chicken genome is sequenced and this, together with microarray and other functional genomics technologies, makes post-genomic research possible in the chicken. At this time, however, such research is hindered by a lack of genomic structural and functional annotations. Bio-ontologies have been developed for different annotation requirements, as well as to facilitate data sharing and computational analysis, but these are not yet optimally utilized in the chicken. Here we discuss genomic annotation and bio-ontologies. We focus specifically on the Gene Ontology (GO), chicken GO annotations and how these can facilitate functional genomics in the chicken. The GO is the most developed and widely used bio-ontology. It is the de facto standard for functional annotation. Despite its critical importance in analyzing microarray and other functional genomics data, relatively few chicken gene products have any GO annotation. When these are available, the average quality of chicken gene products annotations (defined using evidence code weight and annotation depth) is much less than in mouse. Moreover, tools allowing chicken researchers to easily and rapidly use the GO are either lacking or hard to use. To address all of these problems we developed ChickGO and AgBase. Chicken GO annotations are provided by complementary work at MSU-AgBase and EBI-GOA. The GO tools pipeline at AgBase uses GO to derive functional and biological significance from microarray and other functional genomics data. Not only will improved genomic annotation and tools to use these annotations benefit the chicken research community but they will also facilitate research in other avian species and comparative genomics.  相似文献   

20.
Comparative algal genomics often relies on predicted genes from de novo assembled genomes. However, the artifacts introduced by different gene-prediction approaches, and their impact on comparative genomic analysis remain poorly understood. Here, using available genome data from six dinoflagellate species in the Symbiodiniaceae, we identified methodological biases in the published genes that were predicted using different approaches and putative contaminant sequences in the published genome assemblies. We developed and applied a comprehensive customized workflow to predict genes from these genomes. The observed variation among predicted genes resulting from our workflow agreed with current understanding of phylogenetic relationships among these taxa, whereas the variation among the previously published genes was largely biased by the distinct approaches used in each instance. Importantly, these biases affect the inference of homologous gene families and synteny among genomes, thus impacting biological interpretation of these data. Our results demonstrate that a consistent gene-prediction approach is critical for comparative analysis of dinoflagellate genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号