首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial consortium capable of degrading the fumigant 1,3-D ((Z)- and (E)-1,3-dichloropropene) was enriched from an enhanced soil. This mixedculture degraded (Z)- and (E)-1,3-D only in the presence of a suitable biodegradable organic substrate, such as tryptone, tryptophan, or alanine. After 8 months of subculturing at 2- to 3-week intervals, a strain of Rhodococcus sp. (AS2C) that was capable of degrading 1,3-D cometabolically in the presenceof a suitable second substrate was isolated. (Z)-3-chloroallyl alcohol (3-CAA) and (Z)-3-chloroacrylic acid (3-CAAC), and (E)-3-CAA and (E)-3-CAAC were the metabolites of (Z)- and (E)-1,3-D, respectively. (E)-1,3-D was degraded faster than (Z)-1,3-D by the strain AS2C and the consortium. AS2C also degraded (E)-3-CAA faster than (Z)-3-CAA. Isomerization of (E)-1,3-D to (Z)-1,3-D orthe (Z) form to the (E) form did not occur.  相似文献   

2.
The biochemical toxicology of 1,3-difluoroacetone, a known metabolite of the major ingredient of the pesticide Gliftor (1,3-difluoro-2-propanol), was investigated in vivo and in vitro. Rat kidney homogenates supplemented with coenzyme A, ATP, oxaloacetate, and Mg2+ converted 1,3-difluoroacetone to (-)-erythro-fluorocitrate in vitro. Administration of 1,3-difluoroacetone (100 mg kg(-1) body weight) to rats in vivo resulted in (-)-erythro-fluorocitrate synthesis in the kidney, which was preceded by an elevation in fluoride levels and followed by citrate accumulation. Animals dosed with 1,3-difluoroacetone did not display the 2-3 hour lag phase in either (-)-erythro-fluorocitrate synthesis or in citrate and fluoride accumulation characteristic of animals dosed with 1,3-difluoro-2-propanol. We demonstrate that the conversion of 1,3-difluoro-2-propanol to 1,3-difluoroacetone by an NAD+-dependent oxidation is the rate-limiting step in the synthesis of the toxic product, (-)-erythro-fluorocitrate from 1,3-difluoro-2-propanol. Prior administration of 4-methylpyrazole (90 mg kg(-1) body weight) was shown to prevent the conversion of 1,3-difluoro-2-propanol (100 mg kg(-1) body weight) to (-)-erythro-fluorocitrate in vivo and to eliminate the fluoride and citrate elevations seen in 1,3-difluoro-2-propanol-intoxicated animals. However, administration of 4-methylpyrazole (90 mg kg(-1) body weight) to rats 2 hours prior to 1,3-difluoroacetone (100 mg kg(-1) body weight) was ineffective in preventing (-)-erythro-fluorocitrate synthesis and did not diminish fluoride or citrate accumulation in vivo. We conclude that the prophylactic and antidotal properties of 4-methylpyrazole seen in animals treated with 1,3-difluoro-2-propanol derive from its capacity to inhibit the NAD+-dependent oxidation responsible for converting 1,3-difluoro-2-propanol to 1,3-difluoroacetone in the committed step of the toxic pathway.  相似文献   

3.
The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal. As iGb3 synthase (iGb3S) is a candidate glycosyltransferase, we cloned iGb3S cDNA from GGTA1(-/-) mouse thymus and confirmed mRNA expression in both mouse and pig tissues. The mouse iGb3S gene exhibits alternative splicing of exons that results in a markedly different cytoplasmic tail compared with the rat gene. Transfection of iGb3S cDNA resulted in high levels of cell surface Galalpha(1,3)Gal synthesized via the isoglobo series pathway, thus demonstrating that mouse iGb3S is an additional enzyme capable of synthesizing the xenoreactive Galalpha(1,3)Gal epitope. Galalpha(1,3)Gal synthesized by iGb3S, in contrast to alpha1,3GT, was resistant to down-regulation by competition with alpha1,2fucosyltransferase. Moreover, Galalpha(1,3)Gal synthesized by iGb3S was immunogenic and elicited Abs in GGTA1 (-/-) mice. Galalpha(1,3)Gal synthesized by iGb3S may affect survival of pig transplants in humans, and deletion of this gene, or modification of its product, warrants consideration.  相似文献   

4.
The sulphate radical SO4(.-) reacts with 1,3-dimethyluracil (1,3-DMU) (k = 5 X 10(9) dm3 mol-1 s-1) thereby forming with greater than or equal to 90 per cent yield the 1,3-DMU C(5)-OH adduct radical 4 as evidenced by its absorption spectrum and its reactivity toward tetranitromethane. Pulse-conductometric experiments have shown that a 1,3-DMU-SO4(.-) aduct 3 as well as the 1,3-DMU radical cation 1, if formed, must be very short-lived (t1/2 less than or equal to 1 microsecond). The 1,3-DMU C(5)-OH adduct 4 reacts slowly with peroxodisulphate (k = 2.1 X 10(5) dm3 mol-1 s-1). It is suggested that the observed new species is the 1,3-DMU-5-OH-6-SO4(.-) radical 7. At low dose rates a chain reaction is observed. The product of this chain reaction is the cis-5,6-dihydro-5,6-dihydroxy-1,3-dimethyluracil 2. At a dose rate of 2.8 X 10(-3) Gys-1 a G value of approximately 200 was observed ([1,3-DMU] = 5 X 10(-3) mol dm-3; [S2O8(2-)] = 10(-2) mol dm-3; [t-butanol] = 10(-2) mol dm-3). The peculiarities of this chain reaction (strong effect of [1,3-DMU], smaller effect of [S2O(2-)8]) is explained by 7 being an important chain carrier. It is proposed that 7 reacts with 1,3-DMU by electron transfer, albeit more slowly (k approximately 1.2 X 10(4) dm3 mol-1 s-1) than does SO4(.-). The resulting sulphate 6 is considered to hydrolyse into 2 and sulphuric acid which is formed in amounts equivalent to those of 2. Computer simulations provide support for the proposed mechanism. The results of some SCF calculations on the electron distribution in the radical cations derived from uracil and 1-methyluracil are also presented.  相似文献   

5.
A number of problems present themselves during the gas chromatographic-mass spectrometric assay of R,S-1,3-butanediol as its bis-tert-butyldimethylsilyl ether. To circumvent these problems, three labeled internal standards were synthesized: (i) R,S-1,3-[3,4-13C2]-butanediol, (ii) R,S-1,3-[1,1,3-2H3]butanediol, and (iii) R,S-1,3-[1,1,3-2H3,3,4-13C2]butanediol. The availability of internal standards with different degrees of labeling allows (i) assaying of either unlabeled or 13C-labeled R,S-1,3-butanediol and (ii) analysis of 1,3-butanediol in either blood or urine samples. Reproducible standard curves were obtained using both electron impact and ammonia chemical ionization modes. The latter provides greater sensitivity and a lower limit of detection (5 microM). We have also designed an indirect assay of S-3-hydroxybutyrate, a catabolite of R,S-1,3-butanediol, which is difficult to analyze by conventional methods. This assay relies on the difference between (i) the concentration of R,S-3-hydroxybutyrate assayed by gas chromatography-mass spectrometry and (ii) the concentration of R-3-hydroxybutyrate assayed enzymatically.  相似文献   

6.
(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2,4-tr iazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,3, 5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19-24) have been synthesized by the transglycosylation of (2R,5S)-1-[2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-yl] cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

7.
The per-O-acetylated open chain derivatives of 1-(1-butylindol-3-yl)-1-deoxy-1-L-sorbose and 1-(1-butylindol-3-yl)-1-deoxy-L-tagatose, which are readily available by alkaline degradation of 1-butylascorbigen followed by acetylation, were used in a nucleoside-type synthesis. The interaction of these ketoses derivatives with bis-(trimethylsilyl)-uracil yielded in each case a mixture of (E)-2,4,5,6-tetra-O-acetyl-1-(1-butylindol-3-yl)-1,3-dideoxy-3-(uracil-1-yl)-L-xylo-hexa-1-enitol and (E)-2,4,5,6-tetra-O-acetyl-1-(1-butylindol-3-yl)-1,3-dideoxy-3-(uracil-1-yl)-L-lyxo-hexa-1-enitol, which were separated by preparative HPLC. The deacetylation of each of these compounds by MeONa in MeOH produced a mixture of 1-(1-butylindol-3-yl)-1,3-dideoxy-4-O-methyl-3-(uracil-1-yl)-alpha-L-sorbopyranose and 1-(1-butylindol-3-yl)-1,3-dideoxy-4-O-methyl-3-(uracil-1-yl)-beta-D-fructopyranose, which were also separated by HPLC, the structures were confirmed by NMR.  相似文献   

8.
Zhang Y  Li Y  Du C  Liu M  Cao Z 《Metabolic engineering》2006,8(6):578-586
Production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is restrained by ethanol formation. The first step in the formation of ethanol from acetyl-CoA is catalyzed by aldehyde dehydrogenase (ALDH), an enzyme that competes with 1,3-PD oxidoreductase for the cofactor NADH. This study aimed to improve the production of 1,3-PD by engineering the ethanol formation pathway. An inactivation mutation of the aldA gene encoding ALDH in K. pneumoniae YMU2 was generated by insertion of a tetracycline resistance marker. Inactivation of ALDH resulted in a nearly abolished ethanol formation but a significantly improved 1,3-PD production. Metabolic flux analysis revealed that a pronounced redistribution of intracellular metabolic flux occurred. The final titer, the productivity of 1,3-PD and the yield of 1,3-PD relative to glycerol of the mutant strain reached 927.6 mmol L(-1), 14.05 mmol L(-1)h(-1) and 0.699 mol mol(-1), respectively, which were much higher than those of the parent strain. In addition, the specific 1,3-PD-producing capability (1,3-PD produced per gram of cells) of the mutant strain was 2-fold that of the parent strain due to a lower growth yield of the mutant. By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses.  相似文献   

9.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

10.
Cunninghamella blakesleeana DSM 1906 was found to be an efficient biocatalyst for the biotransformation of cycloalkylcarboxylic acids into hydroxy and oxo derivatives. When cultivated in submerged culture, the fungus grew in pellets. In comparison with malt extract-glucose-peptone-yeast extract medium (medium E), Czapek-Dox medium was found to reduce pellet size. Cycloalkylcarboxylic acids were protected against microbial degradation by chemical transformation into 2-cycloalkyl-1,3-benzoxazoles. The transformations of protected cyclopentyl-, cyclohexyl-, cycloheptyl-, and cyclooctylcarboxylic acids by C. blakesleeana were investigated. The biotransformations were performed in medium E by using an aerated, stirred-tank bioreactor. The transformation of 2-cyclopentyl-1,3-benzoxazole yielded (1S,3S)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol as the main product. The main by-product was (1R)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-one, and 2-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol was also obtained in small amounts. During the experiment, the enantiomeric excess of the main product increased up to 64%. 2-Cyclohexyl-1,3-benzoxazole was hydroxylated to 4-(benz-1,3-oxazol-2-yl)cyclohexan-1-ol. 2-Cycloheptyl-1,3-benzoxazole and 2-cyclooctyl-1,3-benzoxazole were transformed into several alcohols and ketones, all in low yields (2 to 19%).  相似文献   

11.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


12.
Histoplasma capsulatum strains can be classified into two chemotypes based on cell wall composition. The cell wall of chemotype II yeast contains a layer of α-(1,3)-glucan that masks immunostimulatory β-(1,3)-glucans from detection by the Dectin-1 receptor on host phagocytes. This α-(1,3)-glucan cell wall component is essential for chemotype II Histoplasma virulence. In contrast, chemotype I yeast cells lack α-(1,3)-glucan in vitro, yet they remain fully virulent in vivo. Analysis of the chemotype I α-glucan synthase (AGS1) locus revealed a 2.7-kb insertion in the promoter region that diminishes AGS1 expression. Nonetheless, AGS1 mRNA can be detected during respiratory infection with chemotype I yeast, suggesting that α-(1,3)-glucan could be produced during in vivo growth despite its absence in vitro. To directly test whether AGS1 contributes to chemotype I strain virulence, we prevented AGS1 function by RNA interference and by insertional mutation. Loss of AGS1 function in chemotype I does not impair the cytotoxicity of ags1(-) mutant yeast to cultured macrophages, nor does it affect the intracellular growth of yeast. In a murine model of histoplasmosis, the ags1(-) chemotype I mutant strains show no defect in lung infection or in extrapulmonary dissemination. Together, these studies demonstrate that AGS1 expression is dispensable for chemotype I yeast virulence, in contrast to the case for chemotype II yeast. Despite the absence of cell wall α-(1,3)-glucan, chemotype I yeast can avoid detection by Dectin-1 in a growth stage-dependent manner. This suggests the production of a unique Histoplasma chemotype I factor that, at least partially, circumvents the α-(1,3)-glucan requirement for yeast virulence.  相似文献   

13.
Formation and thermodynamic characteristics of C-H ... O hydrogen bonding of methylated uracils and caffeine have been studied by nmr along two lines. 1. The concentration and temperature dependencies of the PMR spectra of 1,3-dimethyluracil (m2 1,3Ura), 1,3-dimethylthymine (m2 1,3Thy), and 1,3,6-trimethyluracil (m3 1,3,6Ura) in chloroform at high concentrations of base analogs indicated the self-association of m2 1,3Ura and m2 1,3Thy via C(6)H ... O hydrogen bonding and the competitive formation of C-H ... O bonds between carbonyl oxygens and chloroform. The intermolecular interaction energy and the arrangement of molecules in the local minima of various m2 1,3Ura dimers were calculated by the method of atom-atom potentials. The deepest minimum for the m2 1,3Ura coplanar dimer corresponds to a C(6)-H ... O hydrogen-bond formation. 2. At low concentration of m2 1,3Ura and caffeine in CCl4, C(6)-H ... O bonding for m2 1,3Ura and C(8)-H ... O bonding for caffeine with oxygens of dimethyl sulfoxide (DMSO) and acetone were observed. The association constants of these complexes were obtained at different temperatures. The enthalpies delta H, of the m2 1,3Ura-DMSO, m2 1,3Ura-accetone, caffeine-DMSO, and caffeine-acetone complexes were -2 +/- 0.1 kcal/mol. The calculations showed that the deepest minimum of the caffeine-acetone coplanar complex corresponds to C(8)-H ... O bonding with energy of -3.5 kcal/mol and that of the m2 1,3Ura-acetone complexes corresponds to C(6)-H ... O bonding with energy of -3.4 kcal/mol. The approximate correction for the solvent effect provides good agreement of the experimental data with the calculations.  相似文献   

14.
(1,3;1,4)-β-D-glucans (mixed-linkage glucans) are found in tissues of members of the Poaceae (grasses), and are particularly high in barley (Hordeum vulgare) grains. The present study describes the isolation of three independent (1,3;1,4)-β-D-glucanless (betaglucanless; bgl) mutants of barley which completely lack (1,3;1,4)-β-D-glucan in all the tissues tested. The bgl phenotype cosegregates with the cellulose synthase like HvCslF6 gene on chromosome arm 7HL. Each of the bgl mutants has a single nucleotide substitution in the coding region of the HvCslF6 gene resulting in a change of a highly conserved amino acid residue of the HvCslF6 protein. Microsomal membranes isolated from developing endosperm of the bgl mutants lack detectable (1,3;1,4)-β-D-glucan synthase activity indicating that the HvCslF6 protein is inactive. This was confirmed by transient expression of the HvCslF6 cDNAs in Nicotiana benthamiana leaves. The wild-type HvCslF6 gene directed the synthesis of high levels of (1,3;1,4)-β-D-glucans, whereas the mutant HvCslF6 proteins completely lack the ability to synthesize (1,3;1,4)-β-D-glucans. The fine structure of the (1,3;1,4)-β-D-glucan produced in the tobacco leaf was also very different from that found in cereals having an extremely low DP3/DP4 ratio. These results demonstrate that, among the seven CslF and one CslH genes present in the barley genome, HvCslF6 has a unique role and is the key determinant controlling the biosynthesis of (1,3;1,4)-β-D-glucans. Natural allelic variation in the HvCslF6 gene was found predominantly within introns among 29 barley accessions studied. Genetic manipulation of the HvCslF6 gene could enable control of (1,3;1,4)-β-D-glucans in accordance with the purposes of use.  相似文献   

15.
1. Light induced a rapid breakdown of β-1,3-glucan in carbon-starved cells of Euglena gracilis, Strain Z. In contrast, β-1,3-glucan was utilized slowly in cells deprived of carbon growth substrates and maintained in the dark.

2. The breakdown of β-1,3-glucan required continuous light. At a low light intensity (7 ft candles), induction of the breakdown was delayed 12–24 h.

3. Cells showing a rapid breakdown of β-1,3-glucan contained high activities of the enzymes β-1,3-glucan phosphorylase and β-1,3-glucan hydrolase (EC 3.2.1.6) and a low activity of β-1,3-glucan synthetase (EC 2.4.1.12).

4. The light-induced breakdown of β-1,3-glucan appeared to be associated with the development of chloroplasts. A bleached mutant, ZUV-3, which cannot synthesize pigments when exposed to light, did not show a light-induced breakdown of β-1,3-glucan.

5. Chloramphenicol and 5-fluorouracil, inhibitors of the synthesis of a number of chloroplast proteins, did not inhibit the light-induced breakdown of β-1,3-glucan. Cycloheximide, an inhibitor of cytoplasmic protein synthesis, slightly delayed the breakdown.

6. An inhibitor of photosynthesis, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), only partially inhibited chloroplast development during the period of rapid breakdown of β-1,3-glucan. After the store of β-1,3-glucan had been depleted, DCMU completely inhibited chloroplast development. The requirement for either photosynthesis or an endogenous supply of β-1,3-glucan for chloroplast development could be satisfied by supplying glucose exogenously.  相似文献   


16.
Botryosphaeria rhodina and Trichoderma harzianum Rifai were grown on botryosphaeran (an exopolysaccharide (EPS) of the β-1,3;1,6-d-glucan type produced by B. rhodina) as sole carbon source with the objective of producing β-glucanases of the 1,3-type. Conditions for β-1,3-glucanase production by T. harzianum were examined by a statistical response surface method, and showed maximal enzyme production at 5 days growth in media containing 1.5 g/l of EPS. Good agreement was obtained between the experimental values of β-1,3-glucanase activity and the corresponding values predicted by the mathematical model. The crude β-1,3-glucanase preparations were active towards a number of different β-1,3-glucans and β-glucosides. The mycelium of B. rhodina also proved to be a good substrate for β-1,3-glucanase production by both fungal species.  相似文献   

17.
Intracellular recordings were obtained from rat hippocampal neurons during the microiontophoretic ejection of the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate into the dendritic region (stratum radiatum) of the impaled cells. L-(+)-cis-1-Amino-1,3-cyclopentane dicarboxylate, D(+)-trans-1-amino-1,3-cyclopentane dicarboxylate, and L-(-)-trans-1-amino-1,3-cyclopentane dicarboxylate all evoked patterns of excitation resembling that elicited by kainate. All of these responses were unaffected by D-(-)-2-amino-5-phosphonovalerate but were antagonized at comparable currents by kynurenate. The excitation produced by D-(-)-cis-1-amino-1,3-cyclopentane dicarboxylate was similar to that evoked by N-methyl-D-aspartate. At low ejection currents a slow depolarization triggered rhythmic burst firing, each burst consisting of a depolarizing shift in membrane potential upon which were superimposed four to five action potentials. These responses were antagonized both by D-(-)-2-amino-5-phosphonovalerate and by kynurenate. The results are discussed with respect to the conformational requirements considered to be necessary for interaction at the kainate and N-methyl-D-aspartate receptors on CA1 pyramidal neurones. It is important to note that the isopropylene side chain of kainate is absent from the 1-amino-1-3-cyclopentane dicarboxylate molecule.  相似文献   

18.
Abstract: The neuronal effects of the metabotropic glutamate receptor agonist (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid have been studied in cultured rat cerebellar granule cells, and compared with those of the endogenous excitotoxin glutamate, and the dietary excitotoxin β- N -methylamino- l -alanine. Glutamate, β- N -methylamino- l -alanine, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid all caused concentration-dependent cerebellar granule cell death over a 24-h exposure period. The metabotropic antagonist ( RS )-α-methyl-4-carboxyphenylglycine reduced glutamate-, β- N -methylamino- l -alanine-, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death by 50, 37, and 90%, respectively. (1 S ,3 R )-Aminocyclopentane-1,3-dicarboxylic acid-induced death was unaffected by the group I antagonist ( RS )-1-aminoindan-1,5-dicarboxylic acid, increased by the group II antagonist ethylglutamic acid, and markedly decreased by the group III antagonist ( RS )-α-methylserine- O -phosphate. Neither (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid nor the group I agonist ( RS )-3,5-dihydroxyphenylglycine caused an increase in intracellular free calcium levels. The group III agonist l -(+)-2-amino-4-phosphonobutyric acid also induced concentration-dependent cerebellar granule cell death, and so it was suggested that the group III metabotropic glutamate receptors were responsible for (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death. Blocking these receptors with ( RS )-α-methylserine- O -phosphate also prevented a proportion of glutamate- and β- N -methylamino- l -alanine-induced death.  相似文献   

19.
The Grignard reagents of 2-(2-bromoethyl)-1,3-dioxane and 2-(2-bromoethyl)-1,3-dioxolane readily reacted with the 2-thiopyridyl ester of N-triphenylmethyl-L-leucine to give the ketone adducts 2-[3-oxo-4(S)-(triphenylmethyl) amino-6-methylheptyl]-1,3-dioxane (8a) and 2-[3-oxo-4(S)-(triphenylmethyl) amino-6-methylheptyl]-1,3-dioxolane (8b) in near quantitative yield. When 1 equiv. of the Grignard reagent of 2-(2-bromoethyl)-1,3 dioxane was used, the desired ketone adduct 8a was formed slowly but quantitatively. In contrast, when 2 equiv. of the Grignard reagent were used, the formation of ketone 8a was instantaneous. The triphenylmethyl protecting group was easily removed from 8a using dilute acid to give the amino ketone 2-[3-oxo-4(S)-amino-6-methylheptyl]-1,3-dioxane oxalate salt (9). This material served as a useful intermediate in the synthesis of the ketomethylene analogues of the peptides, Z-Pro-Leu-Gly-OH and Leu-Gly-Val-Phe-OCH3.  相似文献   

20.
An exo-ß-1,3-d-galactanase (Fo/1,3Gal) was purified from the culture filtrate of Fusarium oxysporum 12S. A cDNA encoding Fo/1,3Gal was isolated by in vitro cloning. Module sequence analysis revealed a “GH43_6” domain and a “CBM35_galactosidase-like” domain in Fo/1,3Gal. The recombinant enzyme (rFo/1,3Gal) expressed in Pichia pastoris degraded ß-1,3-galactan and ß-1,3-galactobiose (Gal2), and released only galactose (Gal). In contrast, the enzyme did not hydrolyze p-nitrophenyl ß-d-galactopyranoside, ß-1,4-Gal2, or ß-1,6-Gal2. The enzyme also showed low activity towards native type II arabinogalactans such as larchwood arabinogalactan (LWAG) and gum arabic. Using LWAG as substrate, rFo/1,3Gal released Gal, ß-1,6-Gal2, ß-1,6-galactotriose (Gal3), and ß-1,6-Gal3 substituted with a single arabinofuranose residue accompanied with unidentified oligosaccharides, indicating that the enzyme can by-pass the branching points of ß-1,3-galactan backbones. A time course analysis of products released by rFo/1,3Gal on LWAG revealed that ß-1,6-Gal2 is the main side chain in LWAG and that the activity of rFo/1,3Gal was decreased when degrees of polymerization of side chains increase. rFo/1,3Gal worked synergistically with three other recombinant F. oxysporum enzymes (ß-1,6-galactanase, ß-l-arabinopyranosidase, and α-l-arabinofuranosidase) that degrade side chains, on the degradation of LWAG. However, the synergism was much lower than anticipated, probably because LWAG have longer side chains than the three enzymes used are able to remove or ß-1,3-galactan main chain is interrupted with glycosidic linkages that are different from the ß-1,3-galactosyl linkage. Affinity gel electrophoresis revealed that rFo/1,3Gal specifically bound to ß-1,3-galactan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号