首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ethylene formation from 1-aminocycloprane-1-carboxylic acid (ACC) was studied in whole protoplasts, evaluolated protoplasts and isolated vacuoles from mesophyll cells of Petunia hybrida L. cv. Pink Magic. The re-formation of the large, central vacuole in evacuolated protoplasts and morphological characteristics of both types of protoplasts were examined by electron microscopy. Both the normal, whole protoplasts and vacuoles isolated from them produced ethylene from ACC at similar rates. Freshly-prepared evacuolated protoplasts had lost the capacity to produce ethylene. Re-formation of the central vacuole in these evacuolated protoplasts occurred between 14 to 17 h of incubation in the recovery medium and was followed by the development of ethyleneforming activity. Both these processes were inhibited by cycloheximide, indicating a requirement for new protein synthesis. Light stimulated the conversion of ACC to ethylene in both the regenerating, whole protoplasts and the evacuolated protoplasts that had re-formed the central vacuole.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CHI cycloheximide  相似文献   

2.
The uptake of lucifer yellow CH by suspension-cultured carrotcells and protoplasts has been studied by laser scanning microscopy.This fluorochrome, which does not diffuse across membranes,gradually accumulates in the cell vacuole over a period of hours.In contrast, the central vacuole of protoplasts did not showlucifer yellow fluorescence. The latter was restricted, in protoplasts,to punctate sources in the peripheral cytoplasm. Confocal opticsallowed the complexity of the vacuolar system to be dramaticallydepicted with the laser scanning microscope. Control experimentssupport the contention that lucifer yellow uptake, as in othereukaryotic systems, occurs via endocytosis. Key words: Carrot cells, endocytosis, laser scanning microscopy, lucifer yellow CH, protoplasts, vacuolar apparatus  相似文献   

3.
Vinay Sharma  Dieter Strack 《Planta》1985,163(4):563-568
The distribution of l-malate, sinapic acid esters and 1-sinapoylglucose: l-malate sinapoyltransferase (SMT) which catalyzes the synthesis of sinapoyl-l-malate were examined in preparations of protoplasts obtained from cotyledons of red radish (Raphanus sativus L. var. sativus). Vacuoles isolated from the protoplasts contained all of the SMT activity, all of the accumulated sinapic acid esters and about 50% of free l-malate present initially in the protoplasts. An esterase activity, acting on 1-sinapoyglucose, was found to be exclusively localized in the cytoplasm and a large proportion was found to be recoverable in a 100 000-g pellet obtained from protoplast lysates. The vacuoles were obtained after lysis of the protoplasts by osmotic shock and purification on a Ficoll gradient. The cytoplasmic contamination of vacuole preparations was found to be about 10%, as judged by enzymatic markers and microscopic inspection. No SMT activity was found in a 100 000-g pellet obtained from vacuole lysates. The results indicate that biosynthesis of sinapoyl-l-malate takes place within the central vacuoles of redradish cotyledons.Abbreviation SMT 1-sinapoylglucose: l-malate sinapol-transferase  相似文献   

4.
Summary Ultrastructural alterations to the plasmalemma and tonoplast ofSaccharomyces cerevisiae were studied after incubation in hypertonic solutions of glycerol and sorbitol. After 20 to 30 minutes incubation in glycerol, the cells had shrunk to about 40% of their original volume. Large depressions of the plasmalemma were then always found associated with the typical plasmalemma invaginations. The vacuoles of treated cells changed to an irregular form, the tonoplast intramembranous particles were clustered, and large smooth areas appeared. After 6 to 12 hours incubation, cell and vacuole volume, as well as plasmalemma and tonoplast ultrastructure, had reverted to normal. The rate of recovery was strongly temperature dependent.Protoplasts could be similarly shrunk, but no alterations to the plasmalemma ultrastructure were then observed; however, the tonoplast revealed particle clustering as observed in whole cells. Protoplasts also reverted to normal volume and ultrastructure after prolonged incubation. Cells and protoplasts treated with sorbitol showed similar phenomena, but remained shrunken.By the use of radioactive tracers, glycerol was shown to penetrate cells, protoplasts and isolated vacuoles, but no uptake of sorbitol could be demonstrated.During the glycerol permeation period (0.5 to 6 hours), numerous vesicles were found in the cytoplasm and these were possibly engulfed by the vacuole. Associated with the engulfment, patches of tonoplast intramembranous particles were found in a semicrystalline array. Osmotic stress induced alterations to membrane ultrastructure, due to the use of cryoprotective agents, are discussed.A preliminary note of the paper was given at the Sixth European Congress on Electron Microscopy, Jerusalem, 1976.  相似文献   

5.
Summary Two fluorescent compounds, scopoletin and carboxyfluorescein, have been used to label both tissue culture and leaf mesophyll cells and protoplasts. The compounds localized within the vacuoles of cells in approximately 15 hours. They remained in the vacuole during cell wall digestion, and fluorescence was observable for several hours after protoplast release. A one day pulse of these fluorescent labels had no deleterious effect on the growth of cells or protoplasts. When morphologically indistinguishable protoplasts were labeled and treated with polyethylene glycol, multicolored fluorescent fusion products were observable. These fluorescent labels provide a convenient method for selection of heterokaryon fusion products of whole plant and tissue culture cell protoplasts.  相似文献   

6.
Guard cell protoplasts were prepared from young leaves of peaplants. Under hypertonic conditions they shrink and large numbersof endocytotic (‘osmocytotic’) vacuoles are formedby invagination of the plasma membrane. In thin section theseare indistinguishable from other small vacuoles (‘mini-vacuoles’)which are formed by fragmentation of the large central vacuole.However, the two types of vacuole can be individually recognizedby labelling the central vacuole with neutral red and by performingthe osmotic shrinkage with fluorochromes such as Lucifer Yellow-CHor Cascade Blue present in the extracellular medium. Osmocytoticvacuoles do not fuse with the plasma membrane nor with the mini-vacuolesduring a subsequent swelling phase. After several hours, osmocytosedLucifer Yellow gradually leaks out of the endocytotic vacuoleswhen protoplasts are returned to hypotonic conditions. Thisleakage is not prevented by probenecid at concentrations (20–50mmol m–3) which do not give rise to pathological changesin protoplast ultrastructure. In order to determine the relevanceof these observations to the situation in planta, intact guardcells in epidermal strips were first allowed to accumulate neutralred in their vacuoles and then subjected to osmotic shrinkagein the presence of external Lucifer Yellow. Osmocytotic vacuoleswere not formed, although the production of mini-vacuoles wasfrequently observed. Key words: Guard cell protoplasts, fluid phase markers, Pisum sativum, probenecid, osmocytosis, shrinkage-swelling cycles  相似文献   

7.
鲁云霞  王延枝 《植物研究》2003,23(1):36-38,T002
将分离纯化后的烟草叶片注佻 分别置于光镜和电镜下观察得到原生质体,原生质体释放液泡的过程,纯化后液泡的相应照片,结果说明我们选用的方法能得到完整的原生质体和液泡,且中央液泡是成熟植物细胞中体积最大的细胞器。  相似文献   

8.
Summary Protoplasts ofValonia utricularis lacking the large central vacuole can be generated by cutting multi-nucleated, giant mother cells into small pieces after short exposure to air. When the protoplasmic content was squeezed out into sea water, irregularly shaped, green coloured aggregates were formed which changed into spherical protoplasts (radius of 20–60 m) after about 2 h. In these protoplasts the dense internal material (consisting mainly of organelles) was separated from the plasmalemma by a thin transparent layer containing a large number of small lipid vesicles. Cell wall regeneration occurred rapidly after protoplast formation. A central vacuole developed after about 10h. The regenerated cells continued to grow and were viable for several months. Electrorotation studies on 2–3 h old protoplasts at pH 7 in low- and fairly high-conductivity solutions showed one or two anti-field rotation peaks (depending on medium conductivity) between 10 kHz to 1 MHz as well as one cofield rotation peak between 10 MHz to 100 MHz. The rotation spectra could not be fitted on the basis of the single- (or multi-) shell model (i.e., by modelling the cells as a homogeneous sphere surrounded by one or more layers). However, fairly good agreement between the experimental data and theory could be obtained by assuming that the rotational behaviour of the protoplasts depends not only on passive electrical properties of the plasmalemma but is influenced by mobile charges of carrier transport systems and/or the dielectric behaviour of the aggregated chloroplasts and vesicles.Abbrevations ASW artificial sea water - DAPI 4,6-diamidino-2-phenylindole - DPH diphenyl-l,3,5-hexatriene - MSW Mediterranean sea water - S.D. standard deviation - S.E. standard error  相似文献   

9.
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

10.
The ultrastructural changes of young pollen protoplasts under culture condition in Hemerocallis fulva were studied. In comparison with the original pollen grains, the pollen protoplasts had been completely deprived of pollen wall, but kept the internal structure intact, including a large vacuole, a thin layer of cytoplasm and a peripherally located nucleus. After 8 days of culture a few pollen protoplasts were triggered to cell division: some of them were just undergoing mitosis with clearly visible chromosomes and spindle fibers; the others already divided into 2-celled units. The two daughter cells were equal or unequal in size but with similar distribution of organelles inside. Besides cell division, there were also free nuclear division, amitosis and formation of micronuclei indicating a diversity of division modes in pollen protoplast culture, A series of changes occurred during the process of induction of cell division, such as locomotion of the nucleus toward the central position, disappearence of the large vacuole, increase of electron density of cytoplasm, increase and activation of organelles, diminishing of starch granules in plastids, etc. However, the regeneration of surface wall was not sufficient it contained mostly vesicles with only a few microfibrits. The wall separating the two daughter cells were either complete or incomplete. The weak capability of wall formation is supposed to be one of the major obstacles which has so far restricted sustained cell divisions of young pollen protoplasts under current culture condition.  相似文献   

11.
Mesophyll protoplasts from Brassica oleracea, B. napus, Nicotiana tobaccum and Solanum tuberosum were isolated and subjected to uttracentrifugation at 65000g for 30 min in percoll solutions containing various strengths of salt and osmotic stabilizing agents. After centrifugation, the self-generated percoll gradients were evaluated for their effectiveness in protoplast evacuolation and enucleation. The vacuoles, cell debris, evacuolated protoplasts and enucleated protoplasts were separated. Factors that affected evacuolation and enucleation in the percoll gradients were described. Mesophyll protoplasts produced by epidermis peeling and short enzyme incubation periods were more easily evacuolated and enucleated than those produced by leaf-slicing and long incubation periods. Lower centrifugal force at 25000g for 80 min was also successful in evacuolating and enucleating the mesophyll protoplasts. A green band that contained nearly pure evacuolated protoplasts, of which 45% were enucleated protoplasts, was obtained from the self-generated percoll gradient. Rhodamine 123 staining of mitochondria indicated that the evacuolated protoplasts were metabolically active and were capable of regenerating the vacuole and cell wall. Cell divisions were also observed when the evacuolated protoplasts were cultured.  相似文献   

12.
In the presence of MgSO4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (α-1,3-glucan), R-glucan (β-1,3, β-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion to hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 μg/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

13.
Microfibril deposition on cultured protoplasts ofVicia hajastana   总被引:1,自引:0,他引:1  
Summary Cell wall regeneration by protoplasts fromVicia hajastana suspension cultures was investigated with Calcofluor White ST staining and platinum-palladium surface replicas. Microfibril deposition was initiated after 10–20 minutes of culture and within 20 hours protoplasts were covered with a heavy mat of microfibrils. The early stages of microfibril formation could not be detected with Calcofluor staining.Supported by the National Research Council of Canada, Grant A6304.Supported by Deutsche Forschungsgemeinschaft.  相似文献   

14.
We studied the efflux of radioactive photosynthetic products from the central vacuole into the cytosol of protoplasts isolated from the mesophyll tissue of the sugar beet (Beta vulgaris L.) after their darkening and subsequent cessation of photosynthesis. Among the products accumulated in the vacuole were the 14C-labelled sugars malate and alanine, small amounts of citric, glutamic, and aspartic acids, and some other amino acids. During the initial 20–30 min of darkness, there was no substantial utilization of photoassimilates accumulated in the vacuole during the preceding light period. An efflux of assimilates occurred later, after 30–40 min of darkness. A decrease in the vacuolar 14C-sucrose occurred not only due to its exit into the cytosol but also because of its conversion into 14C-monosaccharides by the vacuolar invertase. In fact, this decrease in the sucrose content correlated well with the accumulation of monosaccharides. Immediately after photosynthesis ceased, the chloroplastic 14C-starch was utilized for the maintenance of cytoplasmic metabolism. After 30-min darkness, the content of starch in the chloroplasts decreased by several times. We believe that the vacuoles of sugar-beet mesophyll cells are transient reservoirs for assimilates and the products of their conversion (glucose and fructose), which can rapidly leave the vacuole to maintain homeostasis in the cytosol under varying environmental conditions.  相似文献   

15.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

16.
Summary Morphological changes in the central vacuole during the growth in in vitro culture ofBlastocystis hominis were investigated by light and electron microscopy. Most cells in log phase and an early stationary phase showed a positive staining reaction in the central vacuole with PAS or Sudan black B stain, whereas cells in late stationary phase showed few positive reactions. Electron microscopic observations revealed that 95% ofB. hominis cells in log phase and 50% of cells in early stationary phase, had a substantial accumulation of electron-dense material in the central vacuole. In contrast, only 25% of the organisms in late stationary phase had an electron-dense central vacuole, while more than 50% of cells had an electron-lucent central vacuole. These results indicate thatB. hominis accumulated carbohydrates and lipids in the central vacuole during cell growth and that the organism probably consumed these metabolic substances during stationary growth. Therefore, it is strongly suggested that the central vacuole is an important organelle for storage of metabolic substances, such as carbohydrates and lipids, required for cell growth.Abbreviations PBS phosphate-buffered saline - PAS periodic acid-Schiff  相似文献   

17.
Fine structural alterations associated with early stages of cotton fiber elongation in Gossypium hirsutum L. var. dunn 56 C occur rapidly following anthesis and appear to be correlated with the formation of the central vacuole, plasma membrane, and primary cell wall as well as with increased protein synthesis necessary for cell elongation. Association of dilated cisternae of the endoplasmic reticulum with the tonoplast suggests that the endoplasmic reticulum is involved in the formation of the central vacuole. Dictyosome involvement in both plasma membrane and primary cell wall formation was suggested from observations of similarities between dictyosome associated vesicles, containing fibrils appearing similar in morphology to fibrils found in the primary cell wall, and plasma membrane associated vesicles. The single nucleolus found in cotton fibers enlarges following anthesis, shows segregation of granular and fibrillar components by 1 day postanthesis, develops a large “vacuole,” thus appearing ring-shaped, and occupies much of the nuclear volume by 2 days postanthesis. Prominent nucleoli were not observed in nuclei after 10 days postanthesis.  相似文献   

18.
Summary Basic proteins ofBlastocystis hominis were detected by the ammoniacal silver and ethanolic phosphotungstic acid techniques using electron microscopy. The central vacuole showed many silver grains when treated with ammoniacal silver and an increased electron density when treated with phosphotungstic acid. The intensity of positive reactions correlated with the electron density of the central vacuole, because cells having an electron-lucent central vacuole showed no silver grain deposits. Since it is known that the concentration of electron-dense materials in the central vacuole increases during log phase of growth, and then decreases in stationary phase, this organelle must accumulate basic proteins during cell growth.  相似文献   

19.
A procedure was developed for the rapid detection of vacuoplasts in vacuole preparations isolated from mesophyll protoplasts of Catharanthus roseus (L.) G. Don (periwinkle). The procedure relies on the staining of surface carbohydrates on the plasma membrane surrounding vacuoplasts with fluorescein-labeled lectins. When isolated under conditions of constant osmotic strength, approximately 15–20% of the vacuoles isolated showed surface labeling with FITC-agglutinin from Abrus precatorius. Isolation of vacuoles after an initial osmotic shock showed much lower (<5%) surface labeling. This lower level of surface labeling correlated well with a lower level of other non-vacuolar marker enzyme activities. A thin layer of cytoplasm was visible in a small number of these stained structures, indicating that they were vacuoplasts.Abbreviations FITC fluorescein isothiocyanate  相似文献   

20.
SJ Swanson  PC Bethke    RL Jones 《The Plant cell》1998,10(5):685-698
Light microscopy was used to study the structure and function of vacuoles in living protoplasts of barley (Hordeum vulgare cv Himalaya) aleurone. Light microscopy showed that aleurone protoplasts contain two distinct types of vacuole: the protein storage vacuole and a lysosome-like organelle, which we have called the secondary vacuole. Fluorescence microscopy using pH-sensitive fluorescent probes and a fluorogenic substrate for cysteine proteases showed that both protein storage vacuoles and secondary vacuoles are acidic, lytic organelles. Ratio imaging showed that the pH of secondary vacuoles was lower in aleurone protoplasts incubated in gibberellic acid than in those incubated in abscisic acid. Uptake of fluorescent probes into intact, isolated protein storage vacuoles and secondary vacuoles required ATP and occurred via at least two types of vanadate-sensitive, ATP-dependent tonoplast transporters. One transporter catalyzed the accumulation of glutathione-conjugated probes, and another transported probes not conjugated to glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号