首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Subnuclear localization of topoisomerase I (top I) is determined by its DNA relaxation activity and a net of its interactions with in majority unidentified nucleolar and nucleoplasmic elements. Here, we recognized SR protein SRSF1 (Serine/arginine-rich splicing factor 1, previously known as SF2/ASF) as a new element of the net. In HeLa cells, overexpression of SRSF1 recruited top I to the nucleoplasm whereas its silencing concentrated it in the nucleolus. Effect of SRSF1 was independent of top I relaxation activity and was the best pronounced for the mutant inactive in relaxation reaction. In HCT116 cells where top I was not released from the nucleolus upon halting relaxation activity, it was also not relocated by elevated level of SRSF1. Out of remaining SR proteins, SRSF5, SRSF7, and SRSF9 did not influence the localization of top I in HeLa cells whereas overexpression of SRSF2, SRSF3, SRSF6, and partly SRSF4 concentrated top I in the nucleolus, most possibly due to the reduction of the SRSF1 accessibility. Specific effect of SRSF1 was exerted because of its distinct RS domain. Silencing of SRSF1 compensated the deletion of the top I N-terminal region, individually responsible for nucleoplasmic localization of the mutant, and restored the wild-type phenotype of deletion mutant localization. SRSF1 was essential for the camptothecin-induced clearance from the nucleolus. These results suggest a possible role of SRSF1 in establishing partition of top I between the nucleolus and the nucleoplasm in some cell types with distinct combinations of SR proteins levels.  相似文献   

2.
3.
Multiple forms and cellular localization of Drosophila DNA topoisomerase II   总被引:7,自引:0,他引:7  
Purified type II topoisomerase from Drosophila melanogaster embryos was reported earlier to contain a major polypeptide of 166,000 daltons and several smaller peptides between 132,000 and 145,000 daltons (Shelton, E. R., Osheroff, N. and Brutlag, D. L. (1983) J. Biol. Chem. 258, 9530-9535). Using purified topoisomerase II we have raised antibodies against the 132,000-166,000-dalton cluster of polypeptides. In this paper we demonstrate that at least three of these polypeptides are also present in embryos immediately upon lysis. Using antigen-affinity purified antibody from the cluster of purified topoisomerase II antigens, we have also discovered several smaller polypeptides in the molecular size range of 30,000-40,000 daltons in embryo extracts. These observations suggest the presence of multiple forms of DNA topoisomerases in the cell. In addition, we demonstrate that purified Drosophila topoisomerase II antibody recognizes yeast topoisomerase II antigens expressed by lambda gt 11-yeast topoisomerase II recombinants (Goto, T. and Wang, J. C. (1984) Cell 36, 1073-1080) establishing a structural homology between yeast and Drosophila enzymes. Antibody preparations were also used to localize the distribution of topoisomerase II in polytene nuclei. In contrast with the distribution of topoisomerase I which is located primarily at puffs, the Drosophila topoisomerase II is distributed generally along the chromosomes paralleling the distribution of DNA itself.  相似文献   

4.
The simian virus 40 large tumour-antigen (T antigen) DNA helicase is a hexameric structure; it has been proposed that, in viral DNA replication, two of these hexamers are combined to form a bipartite holoenzyme that acts concurrently at both forks of a replication bubble. In a search for structural components of this helicase complex, we have identified nucleolin as a specific binding protein for the T-antigen hexamer. We show that nucleolin, in co-operation with human topoisomerase I, mediates the cohesion of the T-antigen helicase holoenzyme during plasmid unwinding. Our results provide biochemical evidence for a direct role of nucleolin in DNA replication, in addition to its known function in ribosome biogenesis. The data presented here suggest that nucleolin enables the formation of a functional 'helicase-swivelase' complex at the replication fork.  相似文献   

5.
Over the past years, modification by covalent attachment of SUMO (small ubiquitin-like modifier) has been demonstrated for of a number of cellular and viral proteins. While increasing evidence suggests a role for SUMO modification in the regulation of protein-protein interactions and/or subcellular localization, most SUMO targets are still at large. In this report we show that Topors, a Topoisomerase I and p53 interacting protein of hitherto unknown function, presents a novel cellular target for SUMO-1 modification. In a yeast two-hybrid system, Topors interacted with both SUMO-1 and the SUMO-1 conjugating enzyme UBC9. Multiple SUMO-1 modified forms of Topors could be detected after cotransfection of exogenous SUMO-1 and Topors induced the colocalization of a YFP tagged SUMO-1 protein in a speckled pattern in the nucleus. A subset of these Topors' nuclear speckles were closely associated with the PML nuclear bodies (POD, ND10). A central domain comprising Topors residues 437 to 574 was sufficient for both sumolation and localization to nuclear speckles. One SUMO-1 acceptor site at lysine residue 560 could be identified within this region. However, sumolation-deficient Topors mutants showed that sumolation obviously is not required for localization to nuclear speckles.  相似文献   

6.
DNA topoisomerase (topo) I is a nuclear enzyme that plays an important role in DNA metabolism. Based on conserved nuclear targeting sequences, four classic nuclear localization signals (NLSs) have been proposed at the N terminus of human topo I, but studies with yeast have suggested that only one of them (amino acids (aa) 150-156) is sufficient to direct the enzyme to the nucleus. In this study, we expressed human topo I fused to enhanced green fluorescent protein (EGFP) in mammalian cells and demonstrated that whereas aa 150-156 are sufficient for nuclear localization, the nucleolar localization requires aa 157-199. More importantly, we identified a novel NLS within aa 117-146. In contrast to the classic NLSs that are rich in basic amino acids, the novel NLS identified in this study is rich in acidic amino acids. Furthermore, this novel NLS alone is sufficient to direct not only EGFP into the nucleus but also topo I; and the EGFP.topo I fusion driven by the novel NLS is as active in vivo as the wild-type topo I in response to the topo I inhibitor topotecan. Together, our results suggest that human topo I carries two independent NLSs that have opposite amino acid compositions.  相似文献   

7.
8.
Heme-binding protein 23 (HBP23), also termed peroxiredoxin (Prx) I, and heme oxygenase-1 (HO-1) are distinct antioxidant stress proteins that are co-ordinately induced by oxidative stress. HBP23/Prx I has thioredoxin-dependent peroxidase activity with high binding affinity for the pro-oxidant heme, while HO-1 is the inducible isoform of the rate-limiting enzyme of heme degradation. We investigated the cellular and subcellular localization of both proteins in rat liver. Whereas by immunohistochemistry (IHC) a uniformly high level of HBP23/Prx I expression was observed in liver parenchymal and different sinusoidal cells, HO-1 expression was restricted to Kupffer cells. By immunoelectron microscopy using the protein A-gold technique, HBP23/Prx I immunoreactivity was detected in cytoplasm, nuclear matrix, mitochondria, and peroxisomes of parenchymal and non-parenchymal liver cell populations. In contrast, the secretory pathway, i.e., the endoplasmic reticulum and Golgi complex, was free of label. As determined by immunocytochemical (ICC) studies in liver cell cultures and by Western and Northern blotting analysis, HBP23/Prx I was highly expressed in cultures of isolated hepatocytes and Kupffer cells. In contrast, HO-1 was constitutively expressed only in Kupffer cell cultures but was also inducible in hepatocytes. These data suggest that HBP23/Prx I and HO-1 may have complementary antioxidant functions in different cell populations in rat liver.  相似文献   

9.
DNA topoisomerase (topo) I plays an important role in DNA metabolism by relieving the torsional restraints of DNA topology through ATP-independent single-strand DNA breakage. In the present study, we expressed human topo I in HeLa cells by fusing it to enhanced green fluorescent protein (EGFP). The EGFP-topo I fusion protein is functionally active in that it relaxes supercoiled plasmid DNA; forms complexes with DNA, as revealed by band depletion assays; and increases the sensitivity of cells to topo I inhibitors such as topotecan, as determined by growth inhibition assays. In contrast, a mutant form of the EGFP-topo I fusion protein, in which the active Tyr has been replaced by Phe (Y723F), has no such activities. Furthermore, the fusion protein localizes to the nucleus at interphase and completely associates with chromatids at every stage of mitosis. Of importance, the mutant fusion protein (Y723F) displays a pattern of subcellular localization identical to that of the wild-type fusion protein, although the mutant fusion protein is catalytically inactive. These results suggest that in addition to its role in DNA metabolism, topo I might also play a structural role in chromosomal organization; moreover, the association of topo I with chromosomal DNA is independent of its catalytic activity. Finally, the fusion constructs may provide a useful tool to study drug action in tumor cells, as demonstrated by nucleolar delocalization of the fusion proteins in response to treatment with the topo I inhibitor topotecan.  相似文献   

10.
Human respiratory syncytial virus (RSV) causes a large burden of disease worldwide. There is no effective vaccine or therapy, and the use of passive immunoprophylaxis with RSV-specific antibodies is limited to high-risk patients. The cellular receptor (or receptors) required for viral entry and replication has yet to be described; its identification will improve understanding of the pathogenesis of infection and provide a target for the development of novel antiviral interventions. Here we show that RSV interacts with host-cell nucleolin via the viral fusion envelope glycoprotein and binds specifically to nucleolin at the apical cell surface in vitro. We observed decreased RSV infection in vitro in neutralization experiments using nucleolin-specific antibodies before viral inoculation, in competition experiments in which virus was incubated with soluble nucleolin before inoculation of cells, and upon RNA interference (RNAi) to silence cellular nucleolin expression. Transfection of nonpermissive Spodoptera frugiperda Sf9 insect cells with human nucleolin conferred susceptibility to RSV infection. RNAi-mediated knockdown of lung nucleolin was associated with a significant reduction in RSV infection in mice (P = 0.0004), confirming that nucleolin is a functional RSV receptor in vivo.  相似文献   

11.
In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy.  相似文献   

12.
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.  相似文献   

13.
14.
15.
Identification and cellular localization of human PFTAIRE1   总被引:1,自引:0,他引:1  
Yang T  Chen JY 《Gene》2001,267(2):165-172
  相似文献   

16.
17.
Hexokinase 1 cellular localization regulates the metabolic fate of glucose   总被引:1,自引:0,他引:1  
《Molecular cell》2022,82(7):1261-1277.e9
  1. Download : Download high-res image (242KB)
  2. Download : Download full-size image
  相似文献   

18.
A Richter  M Kapitza 《FEBS letters》1991,294(1-2):125-128
Histone H1 inhibits the catalytic activity of topoisomerase I in vitro. The relaxation activity of the enzyme is partially inhibited at a molar ratio of one histone H1 molecule per 40 base pairs (bp) of DNA and completely inhibited at a molar ratio of one histone H1 molecule per 10 base pairs of DNA. Increasing the amount of enzyme at a constant histone H1 to DNA ratio antagonizes the inhibition. This indicates that topoisomerase I and histone H1 compete for binding sites on the substrate DNA molecules. Consistent with this we show on the sequence level that histone H1 inhibits the cleavage reaction of topoisomerase I on linear DNA fragments.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号