首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O-haptens of the major fraction (f5A) of B. abortus (Strains 2308 and 19) membrane bound smooth lipopolysaccharide (sLPS) were prepared by hydrolysis of f5A native sLPS in 1% acetic acid at 100°C for 2 h. After hydrolysis, O-haptens were separated from Lipid A-protein complex by centrifugation, and from small fragments by ultrafiltration of molecular weight cut-off (MWCO) 1.0 × 103. These carbohydrate haptens were identified by precipitin-inhibition assay and further fractionated by both membrane filtration and dialysis. The size distributions of carbohydrate haptens of endotoxins (f5A) ranged from oligosaccharides up to polysacchandes of 1.0 × 104 MWCO. Three major fractions of MWCO 8.0 – 10.0 × 103, 3.5 – 5.0 × 103 and < 1.0 × 103 from both strains 2308 and 19 contained more than 85% of the total immunoactive materials. These fractions of haptens were subjected to composition, proton and 13C NMR analysis and were found to be a homopolymer of 12 linked, 4,5-dideoxy-4-formamido-D-mannose (N-formylperosamine), which is identical to O-haptens of B. abortus strain 119.3 and Yersinia enterocolitica serotype 0:9 and similar to Vibrio cholerae 569B (INABA).Fractions of these haptens exhibited similar inhibitory reactivities in a precipitin-inhibition assay as expressed as µmoles of monosaccharide of anhydro-N-formyl perosamine. They were about 480 times as active as Me DMan or DMan.Abbreviations LPS lipopolysaccharides - sLPS smooth lipopolysaccharides - cLPS crude lipopolysaccharide(s) which is equivalent to sLPS of f5, prepared by Moreno et al. [8] - f5A fraction A of f5 which is one of the major of crude LPS prepared by the modification of the method of Moreno et al. [5] - fr. or Fr. fraction - dH2O distilled H2O - AH acid hapten [20] - KDO 3-deoxyoctuosonic acid - DGIc DGlucopyranose - DGal DGalactopyranose - DMan DMannopyranose - MeDMan Methyl-DMan-nopyranoside - MWCO Molecular weight cut off  相似文献   

2.
3.
4.
5.
Brucella abortus is the etiological agent of bovine brucellosis, an infectious disease of humans and cattle. Its pathogenesis is mainly based on its ability to survive and multiply inside macrophages. It has been demonstrated that if B. abortus ferrochelatase cannot incorporate iron into protoporphyrin IX to synthesize heme, the intracellular replication and virulence in mice is highly attenuated. Therefore, it can be hypothesized that the unavailability of iron could lead to the same attenuation in B. abortus pathogenicity. Thus, the purpose of this work was to obtain a B. abortus derivative unable to keep an internal iron pool and test its ability to replicate under iron limitation. To achieve this, we searched for iron-storage proteins in the genome of brucellae and found bacterioferritin (Bfr) as the sole ferritin encoded. Then, a B. abortus bfr mutant was built up and its capacity to store iron and replicate under iron limitation was investigated. Results indicated that B. abortus Bfr accounts for 70% of the intracellular iron content. Under iron limitation, the bfr mutant suffered from enhanced iron restriction with respect to wild type according to its growth retardation pattern, enhanced sensitivity to oxidative stress, accelerated production of siderophores, and altered expression of membrane proteins. Nonetheless, the bfr mutant was able to adapt and replicate even inside eukaryotic cells, indicating that B. abortus responds to internal iron starvation before sensing external iron availability. This suggests an active role of Bfr in controlling iron homeostasis through the availability of Bfr-bound iron.  相似文献   

6.
Exonuclease III, encoded by the xthA gene, plays a central role in the base excision pathway of DNA repair in bacteria. Studies with Escherichia coli xthA mutants have also shown that exonuclease III participates in the repair of oxidative damage to DNA. An isogenic xthA-1 mutant (designated CAM220) derived from virulent Brucella abortus 2308 exhibited increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) compared to the parent strain. In contrast, 2308 and the isogenic xthA-1 mutant displayed similar levels of resistance to the DNA cross-linker mitomycin C. These phenotypic properties are those that would be predicted for a strain defective in base excision repair. The B. abortus xthA-1 mutant also displayed reduced resistance to killing by H2O2 and the ONOO(-)-generating compound 3-morpholinosydnonimine (SIN-1) compared to strain 2308, indicating that the xthA-1 gene product participates in protecting B. abortus 2308 from oxidative damage. Introducing a plasmid-borne copy of the parental xthA-1 gene into CAM220 restored wild-type resistance of this mutant to MMS, H2O2, and SIN-1. Although the B. abortus xthA-1 mutant exhibited increased sensitivity to oxidative killing compared to the parental strain in laboratory assays, CAM220 and 2308 displayed equivalent spleen colonization profiles in C57BL/6 [corrected] mice through 8 weeks postinfection and equivalent intracellular survival and replication profiles in cultured murine macrophages. Thus, although the xthA-1 gene product participates in base excision repair and resistance to oxidative killing in B. abortus 2308, XthA-1 is not required for wild-type virulence of this strain in the mouse model.  相似文献   

7.
Inhalation is a common route for Brucella infection. We investigated whether Brucella species can invade and replicate within alveolar (A549) and bronchial (Calu-6 and 16HBE14o-) human epithelial cells. The number of adherent and intracellular bacteria was higher for rough strains (Brucella canis and Brucella abortus RB51) than for smooth strains (B. abortus 2308 and Brucella suis 1330). Only smooth strains exhibited efficient intracellular replication (1.5–3.5 log increase at 24 h p.i.). A B. abortus mutant with defective expression of the type IV secretion system did not replicate. B. abortus internalization was inhibited by specific inhibitors of microfilaments, microtubules and PI3-kinase activity. As assessed with fluorescent probes, B. abortus infection did not affect the viability of A549 and 16HBE14o- cells, but increased the percentage of injured cells (both strains) and dead cells (RB51) in Calu-6 cultures. LDH levels were increased in supernatants of Calu-6 and 16HBE14o- cells infected with B. abortus RB51, and to a lower extent in Calu-6 infected with B. abortus 2308. No apoptosis was detected by TUNEL upon infection with smooth or rough B. abortus. This study shows that smooth brucellae can infect and replicate in human respiratory epithelial cells inducing minimal or null cytotoxicity.  相似文献   

8.
9.
To avoid potentiating the spread of an antibiotic resistance marker, a plasmid expressing a leuB gene and a heterologous antigen, green fluorescent protein (GFP), was shown to complement a leucine auxotroph of cattle vaccine strain Brucella abortus RB51, which protected CD1 mice from virulent B. abortus 2308 and elicited GFP antibodies.  相似文献   

10.
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection.  相似文献   

11.
Abstract CD-1 mice intravenously infected with the virulent Brucella abortus 2308 strain simultaneously produce significant levels of gamma interferon (IFN-γ) and interleukin-10 (IL-10) in their spleens between the second and eighth day post-infection with no production of interleukin-4 (IL-4). Endogenous synthesis of IL-10 does not affect the production of IFN-γ in this organ, while the production of both cytokines during this period of time is accompanied by a statistically significant increase ( P < 0.001) in the number of colony forming units (cfu) of B. abortus 2308 present in the organ. These findings suggest that although the endogenous synthesis of IL-10 apparently does not affect IFN-γ production, it may affect the effector functions of macrophages to control intracellular brucellae. Production of the Th1 cytokine IFN-γ during B. abortus 2308 infection is also associated with a specific IgG3 and IgG2a response against the B. abortus 2308 lipopolysaccharide (S-LPS) antigen.  相似文献   

12.
A total of 29 strains of Brucella abortus, B. melitensis, B. suis, B. ovis, and B. neotomae were examined for growth and catechol production in a semisynthetic low-iron medium. All strains showed reduced growth yields and, quantitatively, production of catechols varied widely among the different strains with no relationship to species, biotypes, or serotypes of Brucella. No clear correlation between catechol production and growth under iron-limiting conditions was observed. The major catechol was identified as 2,3-dihydroxybenzoic acid, and neither other iron-regulated catechols nor hydroxamate type compounds were detected when representative strains of B. abortus or B. melitensis were grown in tryptic soy broth in the presence of iron-sequestering agents.  相似文献   

13.
Brucella abortus is a pathogen infecting cattle, able to survive, traffic, and proliferate inside host cells. It belongs to the Alphaproteobacteria, a phylogenetic group comprising bacteria with free living, symbiotic, and pathogenic lifestyles. An essential regulator of cell cycle progression named CtrA was described in the model bacterium Caulobacter crescentus. This regulator is conserved in many alphaproteobacteria, but the evolution of its regulon remains elusive. Here we identified promoters that are CtrA targets using ChIP‐seq and we found that CtrA binds to promoters of genes involved in cell cycle progression, in addition to numerous genes encoding outer membrane components involved in export of membrane proteins and synthesis of lipopolysaccharide. Analysis of a conditional B. abortus ctrA loss of function mutant confirmed that CtrA controls cell division. Impairment of cell division generates elongated and branched morphologies, that are also detectable inside HeLa cells. Surprisingly, abnormal bacteria are able to traffic to the endoplasmic reticulum, the usual replication niche of B. abortus in host cells. We also found that CtrA depletion affected outer membrane composition, in particular the abundance and spatial distribution of Omp25. Control of the B. abortus envelope composition by CtrA indicates the plasticity of the CtrA regulon along evolution.  相似文献   

14.
Effect of Brucella abortus transfer factor in preventing murine brucellosis   总被引:2,自引:0,他引:2  
Abstract Mice vaccinated with a protein extract of attenuated Brucella abortus strain 19 had increased resistance to infection with virulent B. abortus strain 2308 and had increased antibody responses to strain 2308. However, resistance to infection and antibody responses were not increased when nonvaccinated recipient mice were given transfer factor preparations that were obtained from either vaccinated donor mice or strain 2308-infected donor mice. Vaccination of mice with the strain 19 extract plus treatment with each transfer factor preparation also did not further increase resistance to infection or antibody responses when compared with mice that received the vaccine alone. These results suggest that transfer factor from mice that have either vaccine-induced protective immunity to B. abortus or active B. abortus infections does not enhance antibody responses and resistance to infection with B. abortus .  相似文献   

15.
Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The Km values for chorismate were 558 and 319 μm for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg2+ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus.The shikimate pathway is a major pathway in primary and secondary plant metabolism (Herrmann, 1995). It provides chorismate for the synthesis of the aromatic amino acids Phe, Tyr, and Trp, which are used in protein biosynthesis, but also serves as a precursor for a wide variety of aromatic substances (Herrmann, 1995; Weaver and Hermann, 1997; Fig. Fig.1a).1a). Chorismate is also the starting point of a biosynthetic pathway leading to phylloquinones (vitamin K1) and anthraquinones (Poulsen and Verpoorte, 1991). The first committed step in this pathway is the conversion of chorismate into isochorismate, which is catalyzed by ICS (Poulsen and Verpoorte, 1991; Fig. Fig.1b).1b). Its substrate, chorismate, plays a pivotal role in the synthesis of shikimate-pathway-derived compounds, and its distribution over the various pathways is expected to be tightly regulated. Elicited cell cultures of Catharanthus roseus provide an example of the partitioning of chorismate. Concurrently, these cultures produce both Trp-derived indole alkaloids and DHBA (Moreno et al., 1994). In bacteria DHBA is synthesized from isochorismate (Young et al., 1969). Elicitation of C. roseus cell cultures with a fungal extract induces not only several enzymes of the indole alkaloid biosynthetic pathway (Pasquali et al., 1992) but also ICS (Moreno et al., 1994). Information concerning the expression and biochemical characteristics of the enzymes that compete for available chorismate (ICS, CM, and AS) may help us to understand the regulation of the distribution of this precursor over the various pathways. Such information is already available for CM (Eberhard et al., 1996) and AS (Poulsen et al., 1993; Bohlmann et al., 1995) but not for ICS. Figure 1a, Position of ICS in the plant metabolism. SA, Salicylic acid, OSB, o-succinylbenzoic acid. b, Reaction catalyzed by ICS.Isochorismate plays an important role in bacterial and plant metabolism as a precursor of o-succinylbenzoic acid, an intermediate in the biosynthesis of menaquinones (vitamin K2) (Weische and Leistner, 1985) and phylloquinones (vitamin K1; Poulsen and Verpoorte, 1991). In bacteria isochorismate is also a precursor of siderophores such as DHBA (Young et al., 1969), enterobactin (Walsh et al., 1990), amonabactin (Barghouthi et al., 1991), and salicylic acid (Serino et al., 1995). Although evidence from tobacco would indicate that salicylic acid in plants is derived from Phe via benzoic acid (Yalpani et al., 1993; Lee et al., 1995; Coquoz et al., 1998), it cannot be excluded that it is also synthesized from isochorismate. In the secondary metabolism of higher plants, isochorismate is a precursor for the biosynthesis of anthraquinones (Inoue et al., 1984; Sieweke and Leistner, 1992), naphthoquinones (Müller and Leistner, 1978), catalpalactone (Inouye et al., 1975), and certain alkaloids in orchids (Leete and Bodem, 1976).ICS was first extracted and partially purified from crude extracts of Aerobacter aerogenes (Young and Gibson, 1969). Later, ICS activity was detected in protein extracts of cell cultures from plants of the Rubiaceae, Celastraceae, and Apocynaceae families (Ledüc et al., 1991; Poulsen et al., 1991; Poulsen and Verpoorte, 1992). Genes encoding ICS have been cloned from bacteria such as Escherichia coli (Ozenberger et al., 1989), Pseudomonas aeruginosa (Serino et al., 1995), Aeromonas hydrophila (Barghouthi et al., 1991), Flavobacterium K3–15 (Schaaf et al., 1993), Hemophilus influenzae (Fleischmann et al., 1995), and Bacillus subtilis (Rowland and Taber, 1996). Both E. coli and B. subtilis have two distinct ICS genes; one is involved in siderophore biosynthesis and the other is involved in menaquinone production (Daruwala et al., 1996, 1997; Müller et al., 1996; Rowland and Taber, 1996). The biochemical properties of the two ICS enzymes from E. coli are different (Daruwala et al., 1997; Liu et al., 1990). Sequence analysis has revealed that the bacterial ICS enzymes share homology with the chorismate-utilizing enzymes AS and p-aminobenzoate synthase, suggesting that they share a common evolutionary origin (Ozenberger et al., 1989).Much biochemical and molecular data concerning the shikimate pathway in plants have accumulated in recent years (Schmid and Amrhein, 1995; Weaver and Hermann, 1997), but relatively little work has been done on ICS from higher plants. The enzyme has been partially purified from Galium mollugo cell cultures (Ledüc et al., 1991, 1997), but purification of the ICS protein to homogeneity has remained elusive, probably because of instability of the enzyme.Our interests focus on the role of ICS in the regulation of chorismate partitioning over the various pathways. Furthermore, we studied ICS in C. roseus to gain insight into the biosynthesis of DHBA in higher plants (Moreno et al., 1994). In this paper we report the first purification, to our knowledge, of ICS to homogeneity from a plant source and the cloning of the corresponding cDNA.  相似文献   

16.
Extracts of Brucella abortus 2308S, prepared either by aqueous extraction of sonically ruptured cells or by phenol-water extraction of whole cells, were subjected to various fractionation procedures and then analyzed to determine their immunoelectrophoretic patterns and chemical properties. Fraction A, prepared from sonic extracts, contained at least nine precipitable components when analyzed by immunoelectrophoresis. Of these, five components gave reactions of nonidentity with each other and, hence, represented separate antigens having unrelated determinant groups. Antigenic component IX, found in both the phenol and sonic extracts, did not form a precipitin line in the presence of serum that had been adsorbed with whole cells and was therefore tentatively identified as a "surface" antigen. From several lines of evidence, component IX was thought to be a lipopolysaccharide similar to the AP substance described by Miles and Pirie and shown by them to carry the "abortus" and "melitensis" determinant groups.  相似文献   

17.
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4+ and CD8+ T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 109, 1010 and 1011 CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 1011 CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.  相似文献   

18.

Background

During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria.

Methodology/Principal Findings

In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability.

Conclusions/Significance

The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia.  相似文献   

19.
20.
Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B. abortus S2308 was cloned, sequenced and expressed. Western blot analysis demonstrated that MDH is an immunogenic membrane-associated protein. In addition, recombinant MDH showed sero-reactivity with 30 individual bovine B. abortus-positive sera by enzyme-linked immunosorbent assay, indicates that MDH may be used as a candidate marker for sero-diagnosis of brucellosis. Furthermore, MDH exhibits fibronectin and plasminogen-binding ability in immunoblotting assay. Inhibition assays on HeLa cells demonstrated that rabbit anti-serum against MDH significantly reduced both bacterial adherence and invasion abilities (p < 0.05), suggesting that MDH play a role in B. abortus colonization. Our results indicated that MDH is not only an immunogenic protein, but is also related to bacterial pathogenesis and may act as a new virulent factor, which will benefit for further understanding the MDH’s roles in B. abortus metabolism, pathogenesis and immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号