首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isocitrate lyase (ICL) from Colwellia psychrerythraea, a psychrophilic bacterium, was purified and characterized. The subunit molecular mass was 64 kDa, which is larger than that of other bacterial ICLs. The optimal temperature for its activity was 25 degrees C, the value of K(m) for the substrate ( DL-isocitrate) was minimum at 15 degrees C, and the catalytic efficiency ( k(cat)/ K(m)) value was maximum at 20 degrees C. Furthermore, the enzyme was remarkably thermolabile and completely inactivated by incubation for 2 min at 30 degrees C. These features indicate that ICL from this bacterium is a typical cold-adapted enzyme. A partial amino acid sequence of the C. psychrerythraea ICL was very similar to that of the closely related psychrophile Colwellia maris. Expression of the gene encoding the C. psychrerythraea ICL was found to be induced by low temperatures and by acetate in the medium. The cold adaptation of the catalytic properties of ICL and the stimulated expression of its gene at low temperatures strongly suggest that this enzyme is important for the growth of this bacterium in a cold environment.  相似文献   

2.
Two structurally different monomeric and dimeric types of isocitrate dehydrogenase (IDH; EC 1.1.1.42) isozymes were confirmed to exist in a psychrophilic bacterium, Colwellia psychrerythraea, by Western blot analysis and the genes encoding them were cloned and sequenced. Open reading frames of the genes (icd-M and icd-D) encoding the monomeric and dimeric IDHs of this bacterium, IDH-M and IDH-D, were 2,232 and 1,251 bp in length and corresponded to polypeptides composed of 743 and 416 amino acids, respectively. The deduced amino acid sequences of the IDH-M and IDH-D showed high homology with those of monomeric and dimeric IDHs from other bacteria, respectively. Although the two genes were located in tandem, icd-M then icd-D, on the chromosomal DNA, a Northern blot analysis and primer extension experiment revealed that they are transcribed independent of each other. The expression of the monomeric and dimeric IDH isozyme genes in C. maris, a psychrophilic bacterium of the same genus as C. psychrerythraea, is known to be induced by low temperature and acetate, respectively, but no such induction in the expression of the C. psychrerythraea icd-M and icd-D genes was detected. IDH-M and IDH-D overexpressed in Escherichia coli were purified and characterized. In C. psychrerythraea, the IDH-M isozyme is cold-active whereas IDH-D is mesophilic, which is similar to C. maris that contains both cold-adapted and mesophilic isozymes of IDH. Experiments with chimeric enzymes between the cold-adapted monomeric IDHs of C. psychrerythraea and C. maris (IDH-M and ICD-II, respectively) suggested that the C-terminal region of the C. maris IDH-II is involved in its catalytic activity.  相似文献   

3.
The dnaK and dnaJ genes, encoding heat shock proteins, were cloned from a psychrophilic bacterium, Colwellia maris. Significant homology was evident comparing DnaK and DnaJ of the psychrophilile with the counterparts of mesophilic and thermophilic bacteria. In the DnaJ protein, three conserved regions of the Hsp40 family were observed. A putative promoter similar to the sigma32 consensus sequence was found upstream of the dnaK gene. The G+C content in the 5'-untranslated region of the dnaK gene was much lower than that in the corresponding region of mesophilic bacteria. Northern-blot analysis and primer-extension analysis showed that both genes were transcribed separately as monocistronic mRNAs. Following several temperature upshifts from 10 to 26 degrees C, maximum induction of the dnaK and dnaJ mRNAs was detected at 20 degrees C, suggesting that this temperature induces the heat shock response in this bacterium. In addition, the level of the induction of the dnaJ gene was much lower than that of the dnaK gene. These findings together revealed several specific features of the heat shock response at a relatively low temperature in psychrophiles.  相似文献   

4.
5.
The gene encoding isocitrate lyase (ICL) from a nitrogen-fixing mesophilic bacterium, Azotobacter vinelandii strain IAM1078, was cloned, and the gene expression was examined. When sodium acetate or glucose was used as carbon source, similar growth was observed in this bacterium, but the ICL activity of cells grown with the former source was 43-hold higher than those with the latter. In addition, northern blot analysis revealed that expression of the ICL gene was induced by acetate. Based on a comparison of the amino acid sequences of the ICLs of various organisms, the ICL of this bacterium was found to be classifiable into subfamily 3, one of two phylogenetic groups of eubacteial ICLs. Replacement of the Ile504 in the ICL by Met, which is conserved in the corresponding position of cold-adapted ICLs of psychrophlic bacteria, resulted in decreased thermostability of activity, indicating that this amino acid residue is involved in thermal properties of this enzyme.  相似文献   

6.
Several properties of chimeric enzymes between a mesophilic isocitrate dehydrogenase (IDH) from a nitrogen-fixing bacterium, Azotobacter vinelandii, and a cold-adapted IDH isozyme (IDH-II) from a psychrophilic bacterium, Colwellia maris, were examined. Each of the genes encoding the IDHs was divided into four regions of almost equal lengths, and each region was ligated with different combinations to construct various chimeric genes. The resultant wild-type and chimeric genes were overexpressed in Escherichia coli. The wild-type and chimeric IDHs were classified into three groups based on optimum temperatures for activity of 20°, 30°, and 40°C. The IDHs with a lower optimum temperature were more thermolabile. The optimum temperature and thermostability of the chimeric enzymes decreased on increasing the proportion derived from the cold-adapted IDH-II of C. maris. Furthermore, the C-terminal region of the C. maris IDH-II was suggested to be responsible for its psychrophilic characteristics.  相似文献   

7.
The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (NapSgel) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (NapSput) was examined at varied temperature. Irreversible deactivation of NapSgel and NapSput occurred at 54.5 and 65 °C, respectively. When NapSgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that NapSgel was poised for optimal catalysis at modest temperatures and, unlike NapSput, did not benefit from thermally-induced refolding. At 20 °C, NapSgel reduced selenate at 16% of the rate of nitrate reduction. NapSput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in NapSgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the NapSgel cold-adapted phenotype. Protein homology modeling of NapSgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic substitutions (Asn ↔ His, Val ↔ Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π–π and/or cation–π interactions. Three mesophilic ↔ psychrophilic substitutions occurred within 4.5 Å of the Mo–MGD cofactor (Phe ↔ Met, Ala ↔ Ser, Ser ↔ Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding networks. These results contribute to the understanding of thermal protein adaptation in a redox-active mononuclear molybdenum enzyme and have implications in optimizing the design of low-temperature environmental biosensors.  相似文献   

8.
Extremophiles - A cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Psychromonas marina (PmIDH), showed a high degree of amino acid sequential identity (64%) to a...  相似文献   

9.
10.
An extracellular serine proteinase, lap2, from the psychrophilic antarctic yeast Leucosporidium antarcticum 171 was purified to homogeneity and characterized. The enzyme is a glycoprotein with a molecular mass of 34.4 kDa and an isoelectric point of pH 5.62. The proteinase is halotolerant, and its activity and stability are dependent neither on Ca2+ nor on other metal ions. Lap2 is a true psychrophilic enzyme because of low optimal temperature (25°C), poor thermal stability, relatively small values of free energy, enthalpy and entropy of activation, and high catalytic efficiency at 0–25°C. The 35 N-terminal amino acid residues of lap2 have homology with subtilases of the proteinase K subfamily (clan SB, family S8, subfamily C). The proteinase lap2 is the first psychrophilic subtilase in this family.Communicated by K. Horikoshi  相似文献   

11.
The beta-lactamase gene (mbla) of the psychrophilic marine bacterium Moritella marina strain MP-1 was identified in a previously isolated genomic DNA fragment and it was expressed in Escherichia coli cells. The mbla gene encoded a protein consisting of 287 amino acid residues. Its predicted amino acid sequence showed approximately 50% identity with that of a number of class A beta-lactamases, especially with that of CARB/PSE type of beta-lactamases (carbenicillinases). E. coli transformed with the plasmid containing mbla grew on an ampicillin-containing plate at 37 degrees C but not at 42 degrees C, suggesting that the beta-lactamase of this bacterium is heat-labile.  相似文献   

12.
The characteristic of cold-adapted enzymes, high catalytic efficiency at low temperatures, is often associated with low thermostability and high flexibility. In this context, we analyzed the catalytic properties and solved the crystal structure of phenylalanine hydroxylase from the psychrophilic bacterium Colwellia psychrerythraea 34H (CpPAH). CpPAH displays highest activity with tetrahydrobiopterin (BH(4)) as cofactor and at 25 degrees C (15 degrees C above the optimal growth temperature). Although the enzyme is monomeric with a single L-Phe-binding site, the substrate binds cooperatively. In comparison with PAH from mesophilic bacteria and mammalian organisms, CpPAH shows elevated [S(0.5)](L-Phe) (= 1.1 +/- 0.1 mm) and K(m)(BH(4))(= 0.3 +/- 0.1 mm), as well as high catalytic efficiency at 10 degrees C. However, the half-inactivation and denaturation temperature is only slightly lowered (T(m) approximately 52 degrees C; where T(m) is half-denaturation temperature), in contrast to other cold-adapted enzymes. The crystal structure shows regions of local flexibility close to the highly solvent accessible binding sites for BH(4) (Gly(87)/Phe(88)/Gly(89)) and l-Phe (Tyr(114)-Pro(118)). Normal mode and COREX analysis also detect these and other areas with high flexibility. Greater mobility around the active site and disrupted hydrogen bonding abilities for the cofactor appear to represent cold-adaptive properties that do not markedly affect the thermostability of CpPAH.  相似文献   

13.
Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.  相似文献   

14.
The gene encoding a cold-adapted phospholipase A(1) (PLA(1)) from a psychrotrophic, glacier soil bacterium Serratia sp. xjF1 was cloned by two-step PCR (general PCR and TAIL-PCR). The full-length fragment comprised two open reading frames plA and plS. The gene product of plA encoding 320 amino acids with a molecular weight of 33.8kDa was identified as a phospholipase A(1). Its amino acid sequence exhibited the highest homology to PLA(1) of Serratia marcescens (71%). plS encoded a protein of 251 amino acids, which showed no enzymatic activity. The result of plA expression in Escherichia coli indicated that plS might improve the efficient expression of PLA(1) in E. coli. Furthermore, PLA(1) was functionally expressed in Pichia pastoris, yielding 41.8U/mL in a 3.7L fermentor. The purified recombinant phospholipase A(1) (rPLA(1)) had features typical of cold-adapted enzymes with a temperature optimum of 35°C and a maximum activity of 70% at 10°C. The rate of catalysis was optimal at pH 9.0 and the enzyme could be slightly activated by Ca(2+). This is the first report on gene isolation and expression of cold-adapted PLA(1).  相似文献   

15.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.  相似文献   

16.
Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the "photopsychrophiles") in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10 degrees C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes.  相似文献   

17.
Characterization and sequence of the Escherichia coli panBCD gene cluster   总被引:2,自引:0,他引:2  
Abstract A metabolic key enzyme malate dehydrogenase (MDH) was purified from a deep-sea psychrophilic bacterium, Vibrio sp. strain no. 5710. The enzyme displayed an optimal activity shifted toward lower temperature and a pronounced heat lability. A gene encoding this enzyme was isolated and cloned. Recombinant Escherichia coli cells harboring the isolated clone expressed MDH activity with temperature stability identical to that of the parental psychrophile. Nucleotide sequencing of the gene revealed that its primary sequence was similar to that of a mesophile E. coli MDH (78% amino acid identity), for which the three-dimensional structure is known. The enzyme is thus suitable for the analysis of molecular adaptations to low temperatures.  相似文献   

18.
The growth of Escherichia coli cells is impaired at temperatures below 21 degrees C and stops at 7.5 degrees C; however, growth of a transgenic strain producing the cold-adapted chaperones Cpn60 and Cpn10 from the psychrophilic bacterium Oleispira antarctica is good at low temperatures. The E. coli cpn(+) transgene offers a novel opportunity for examining the essential protein for cell viability at low temperatures. By screening a large-scale protein map (proteome) of cells of K-12 and its Cpn(+) transgene incubated at 4 degrees C, we identified 22 housekeeping proteins involved in systems failure of E. coli when confronted with low temperature. Through co-immunoprecipitation of Cpn60, Northern blot, and in vitro refolding, we systematically identified that protein-chaperone interactions are key determinants of their protein functions at low temperatures. Furthermore, chromosomal gene deletion experiments suggest that the mechanism of cold-induced systems failure in E. coli is cold-induced inactivation of the GroELS chaperonins and the resulting failure to refold cold-inactivated Dps, ClpB, DnaK and RpsB proteins. These findings: (1) indicate the potential importance of chaperones in cold sensitivity, cold adaptation and cold tolerance in cellular systems, and (2) suggest the identity of a few key cold-sensitive chaperone-interacting proteins that get inactivated and ultimately cause systems failure in E. coli cells at low temperatures.  相似文献   

19.
The marine psychrophilic bacterium Moritella marina, isolated from a sample raised from a depth of 1,200 m in the northern Pacific Ocean, secretes several chitinases in response to chitin induction. A gene coding for an extracellular chitinolytic enzyme was cloned and its nucleotide sequence was determined. The chitinase gene consists of an open reading frame of 1,650 nucleotides and encodes a protein of 550 amino acids with a calculated molecular weight of 60.788 kDa, named MmChi60. MmChi60 has a modular structure consisting of a glycosyl-hydrolase family 18 N-terminal catalytic region as well as a C-terminal chitin-binding domain (ChBD). The new chitinase was purified to homogeneity from the intracellular fraction of Escherichia coli. The optimum pH and temperature of the recombinant MmChi60 were 5.0 and 28 degrees C, respectively. The mode of action of the new enzyme on N-acetylchitooligomers, chitin polymers, and other substrates was examined, and MmChi60 was classified as an endochitinase. Thermal unfolding of MmChi60 was studied using differential scanning microcalorimetry and revealed that the protein unfolds reversibly at 65 degrees C. On the basis of the crystal structure of the chitinase C of Streptomyces griseus, a homology-based 3-D model of the ChBD of the MmChi60 was calculated.  相似文献   

20.
The β-lactamase gene (mbla) of the psychrophilic marine bacterium Moritella marina strain MP-1 was identified in a previously isolated genomic DNA fragment and it was expressed in Escherichia coli cells. The mbla gene encoded a protein consisting of 287 amino acid residues. Its predicted amino acid sequence showed approximately 50% identity with that of a number of class A β-lactamases, especially with that of CARB/PSE type of β-lactamases (carbenicillinases). E. coli transformed with the plasmid containing mbla grew on an amplicillin-containing plate at 37°C but not at 42°C, suggesting that the β-lactamase of this bacterium is heat-labile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号