首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The instability of polysaccharide/protein mixtures occurs because of either thermodynamic incompatibility or complexation. We studied which instability mechanism dominated given the external conditions. Therefore the effect of temperature, pH, and biopolymer concentration on the phase separation of pectin/caseinate mixtures was investigated. At pH > 6, thermodynamic incompatibility with spinodal decomposition was observed in pectin/caseinate mixtures resulting in the formation of water-in-water emulsions in intermediate stages of the phase separation process. The demixing rate of these emulsions and appearance of two macroscopic phases (lower phase enriched with caseinate and upper phase with pectin) was retarded when the pectin concentration increased or when the storage temperature decreased due to a higher viscosity of the mixtures at those conditions. As the pH of the mixture was lowered below 6, pectin accumulated in the caseinate-rich phase. Complexation of pectin and caseinate led to the formation of microparticles (approximately 3 microm), whose shape depends on the biopolymer concentration ratio and rate of acidification. These pectin/caseinate particles do not coalesce and are insensitive to salt addition.  相似文献   

2.
Small deformation dynamic oscillation and bright field microscopy were used to examine the structural properties of single and mixed high methoxy pectin and gelatin systems in the presence of sucrose/glucose syrup blends. Co-solute concentrated (≥78%) systems of the polysaccharide form rubbery structures which are readily transformed into glassy consistencies according to the time-temperature superposition principle. Increasing amounts of co-solute in the gelatin samples induce changes in viscoelasticity from that of conventional hydrogels to mechanical traces that cover much of the plateau region and the beginning of the glass transition area. Furthermore, manipulation of the protein/ sugar ratio can result in strong crystalline matrices, or viscoelastic solutions where the co-solute forms the continuous phase and the gelatin inclusions can undertake a conformational transition. The properties of the single components were used to rationalise the phase behaviour of their mixtures. Upon triggering the gelation of pectin, mixtures can be made where either gelatin or both components form a continuous phase. Results are discussed in the light of evidence obtained from the ethylene glycol work in Part I.  相似文献   

3.
Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this “structure” factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.  相似文献   

4.
The incompatibility of acid gelatin/iota-carrageenan mixtures has been studied. Both these biopolymers undergo a conformational coil-helix transition under suitable conditions of temperature and salt. The aim of this work was to study the concentration at which mixtures are incompatible and the influence of pH, salt and temperature on the phase diagram. Incompatibility occurred over a wide range of concentrations for mixtures prepared in deionized water. Compatibility was increased by increasing the pH or the salt concentration. Temperature did not greatly influence the size of the incompatible region. This is in agreement with the hypothesis that attractive electrostatic interactions lead to associative phase separation (traditionally called complex coacervation).  相似文献   

5.
Assemblies of pectin, xyloglucan and cellulose were studied in vitro using two ternary systems. In the first one, xyloglucan concentration varied, while pectin amount was kept constant. In the second one, pectin concentration varied, whereas xyloglucan amount was fixed. The use of ternary systems allowed to put forward the hypothesis that pectin/cellulose and xyloglucan/cellulose associations may exist together or separately, depending on the proportion of non-cellulosic polysaccharides in cell walls. It can be hypothesized that pectin plays a double role within primary cell walls: (i) pectin loosely bound to cellulose, in xyloglucan-rich cell walls, (ii) pectin associated with cellulose, in xyloglucan-poor cell walls.  相似文献   

6.
Pectin and cellulose are major components of most primary cell walls, yet little is known about the way in which they interact either during assembly or in subsequent functional performance of the wall. As a mimic of cell wall assembly, we studied the formation of molecular composites formed by deposition of cellulose from Acetobacter xylinus into pectin/calcium systems, and the molecular, architectural and mechanical properties of the composites obtained. The formation of interpenetrating cellulose/pectin composite networks (as envisaged in current models for primary cell walls) required a pre-existing, but not too strong, pectin network. For pectin either in solution or strongly networked, phase separation from cellulose occurred, providing two physical models for the formation of middle lamellae. Composite networks showed no evidence of direct molecular interaction between the components, but pectin networks became more aggregated following deposition of cellulose into them. The shear strength under small deformation conditions for cellulose/pectin composites was very similar to that of cellulose alone. In contrast, under uniaxial tension, extensibility was greatly increased and stiffness decreased. These major changes were due to the effect of pectin on cellulose network architecture at deposition, as they were maintained upon removal of the pectin component. These results show that the presence and physical state of pectin at the time of cellulose deposition in muro may be a significant determinant of subsequent extensibility without compromising strength.  相似文献   

7.
An approach to the study of phase separation in ternary aqueous systems   总被引:7,自引:6,他引:1  
1. Simple thermodynamic expressions are used to describe the properties of uncharged binary and ternary polymer solutions, in particular the sedimentation equilibrium of binary systems and the osmotic pressures and `incompatible' phase separations of ternary systems. 2. Sedimentation-equilibrium experiments were performed on four samples of dextran and two of polyethylene glycol. The critical points of the phase diagrams were determined for the mixed solutions of polyethylene glycol–dextran–water and of polyethylene glycol–bovine serum albumin–0·2m-sodium chloride solution. Osmotic pressures were measured on a single-phase mixed solution of a polyethylene glycol and a dextran. By use of the simple thermodynamic expressions consistent values of second virial and interaction coefficients for the materials used were obtained from these experiments. 3. The interpretation of the values of the second virial and interaction coefficients, on the basis of three models of molecular interaction, is discussed.  相似文献   

8.
Aqueous solutions of highly esterified propylene glycol alginate and gelatin interact rapidly in mildly alkaline conditions to form a gel with a very high melting point. The interaction involves the formation of amide bonds between the ester and uncharged amino groups on the protein.Neither high-methoxyl pectin nor highly esterified propylene glycol pectate formed thermostable gels with gelatin, and the lack of reactivity was not due to differences between pectate and alginate in viscosity, rate of depolymerisation or rate of saponification. Pectate esters will react, however, with low molecular weight diamines in anhydrous conditions.It is suggested that the different reactivity of the uronides in water reflects differences in the geometries of their glycosidic links between monomers, and that in alginate it is the mannuronic residues that are involved in these reactions.  相似文献   

9.
The concentration of skimmed milk proteins by polysaccharides such as gum arabic, arabinogalactan and apple pectin with a high content of methoxyl groups was studied. Investigation of the thermodynamic compatibility of skimmed milk proteins with these polysaccharides at different NaCl concentrations and pH has shown that above a certain polysaccharide concentration termed the ‘threshold of complete incompatibility’ the protein is almost completely excluded from the polysaccharide phase. Phase diagrams obtained for the systems: water-skimmed milk proteins-arabinogalactan, water-skimmed milk proteins-gum arabic and water-skimmed milk proteins-pectin, indicate that highly esterified apple pectin is superior to the other polysaccharides for concentrating skimmed milk proteins.The proposed method of concentration which may be called ‘membraneless isobaric osmosis' has a higher productivity and lower energy consumption than other methods of biopolymer concentration.  相似文献   

10.
Adamantane-modified compounds are known to form stable complexes with beta-cyclodextrins (beta-CD) by host-guest interactions. In this study, the inclusion complex formed between beta-CD cavities and the adamantane group was evaluated for the elaboration of a cation-exchange support. The synthesis of the chromatographic supports involved three steps: (i) a polymer of beta-CD was grafted to diol-modified silica, (ii) a dextran polymer was modified by both adamantane groups and ionizable COOH functions, (iii) the dextran derivative (Ad-Dex-COOH) was bound to the chromatographic support by complexation between the adamantane groups of the dextran and beta-CD cavities of the support. The polymer immobilization on the beta-CD support was successful as the resulting support exhibited weak cation-exchange properties. The stationary phase was easy to prepare under mild conditions (aqueous media, room temperature) and was quite stable when using aqueous mobile phases. The chromatographic behaviour of model proteins was studied in isocratic elution by examining the effect of salt concentration in the buffer on retention. A mixed retention mode was found for lysozyme, revealing both electrostatic and hydrophobic interactions with the stationary phase.  相似文献   

11.
The relationship between the height of gels determined by a sag test and their elastic shear modulus (G′) has been both investigated experimentally and simulated using a finite element analysis for the inhomogeneous deformation of gels due to gravity. It was assumed in the simulations that gels can be modeled as incompressible linear elastic materials. General relationships between the sag of gels and their elastic modulus were obtained from the simulations for slip and no-slip conditions. The relationships were tested experimentally on pectin, gelatin and polyacrylamide gels with a range of concentrations and rigidities. The good agreement between the predictions and the results shows that these gels can be modeled accurately as incompressible elastic materials. A standard 150° SAG pectin gel, which sags 23.5% in the SAG test, has G′ moduli of 429 and 379 Pa under slip and no-slip conditions, respectively.  相似文献   

12.
Summary Recombinant Chinese hamster ovary cells were successfully cultured semi-continuously on microcarriers of gelatin or modified dextran under non-selective conditions for up to three weeks. High and constant production rates for human immune interferon and tissue-type plasminogen activator were obtained. For cells that produced interferon, the highest cell concentration and interferon production was obtained with gelatin microcarriers though the specific production when grown in the presence of 0.2% fetal calf serum was slightly higher for cells cultured on dextran microcarriers (0.12 U/cell day versus 0.11 U/cell day). For cells that produced plasminogen activator, a slightly higher cell concentration was obtained for cells grown on dextran microcarriers (9x105 cells/ml versus 7x105 cells/ml). However, the specific and total production rates were significantly higher for cells cultured on gelatin microcarriers (6.7 pg/cell day versus 2.1 pg/cell day). The maximum cell concentration and specific production rate could be increased to 2.3x106 cells/ml and 3.4 pg/cell day for dextran microcarriers by adding 6-aminohexanoic acid to the medium. For gelatin microcarriers, the addition of 6-aminohexanoic acid increased the specific production rate to 14.4 pg/cell day. Cell growth, however, was inhibited.  相似文献   

13.
Instead of aqueous solutions, universally recognized in enzymology, ternary systems of the water/organic solvent/surfactant type are suggested as liquid-crystalline media for enzymatic reactions. Two systems, water/octane/Aerosol OT and water/cyclohexane/Brij 96, have been used to solubilize acid and alkaline phosphatases and peroxidase. The enzymes under study do function in liquid-crystalline mesophases having lamellar, cylindrical (reversed hexagonal) and ball-shaped (reversed cubic) packing of the surfactant molecules. A significant result is that the phase transition from one liquid-crystalline structure to another entails, as a rule, a reversible change in the catalytic activity of the solubilized enzyme.  相似文献   

14.
OBJECTIVE: To investigate whether endothelial monolayer permeability changes induced by inflammatory mediators are affected by the extracellular matrix protein used for cell seeding. METHODS: Human umbilical venular endothelial cells (HUVEC) were grown to confluent monolayers on membranes coated with either collagen, fibronectin or gelatin. The permeability to albumin and dextran was then assessed, both under normal conditions and after treatment with tumor necrosis factor-alpha (TNF-alpha) and bacterial lipopolysaccharide (LPS). RESULTS: With any of the three protein coatings, tight junctions were formed all over the monolayers. The permeability of the coated membranes to albumin and dextran was reduced strongly by confluent monolayers; the relative reduction was similar for the three matrix proteins used. Pre-incubation of the monolayers with either TNF-alpha or LPS increased permeability dose dependently. However, the relative increase due to either treatment was independent of the protein used for membrane coating. CONCLUSION: The extracellular matrix protein used for initial seeding of endothelial cultures plays a minor role in determining the permeability changes induced in HUVEC monolayers by inflammatory mediators.  相似文献   

15.
Manufacturers of vaccines and other biologicals are under increasing pressure from regulatory agencies to develop production methods that are completely animal-component-free. In order to comply with this demand, alternative cell culture substrates to those now on the market, primarily collagen or gelatin, must be found. In this paper, we have tested a number of possible substitutes including recombinant collagen, a 100-kDa recombinant gelatin fragment and a peptide derived from a cell-binding region of type I collagen. The small 15-amino acid peptide did not support attachment of human fibroblasts in monolayer culture. The 100-kDa gelatin fragment supported cell attachment in monolayer culture, but was significantly less active than intact porcine gelatin. Recombinant type I collagen was as successful in promoting cell attachment as native collagen, and both were more effective than porcine gelatin. Based on these data, dextran microspheres were treated with the same attachment proteins—porcine gelatin, native collagen, or recombinant collagen. The same trends were observed as in monolayer culture. Concentrations of the recombinant collagen (as well as native collagen) supported cell attachment on dextran microspheres at concentrations as low as 0.01 μg/cm2. Treatment of the dextran with a low level of polyethylenimine, a cationic moiety, further enhanced attachment when used in conjunction with the low concentration of recombinant collagen. Where there was increased cell attachment, increased proliferation followed. We are confident, based on these findings, that a fully recombinant substitute could replace gelatin in current microcarrier preparations without losing the cell growth benefits provided by the native protein.  相似文献   

16.
The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of aluminum (Al) in plants is the inhibition of root elongation due to Al binding tightly to these negative sites in exchange for Ca. Because phospholipid and pectin concentrations decrease in roots of some plant species under phosphorus (P)-limiting conditions, we hypothesized that rice (Oryza sativa L.) seedlings grown under P-limiting conditions would demonstrate enhanced Al tolerance because of their fewer sites on their roots. For pretreatment, rice seedlings were grown in a culture solution with (+P) or without (−P) P. Thereafter, the seedlings were transferred to a solution with or without Al, and the lipid, pectin, hemicellulose, and mineral concentrations as well as Al tolerance were then determined. Furthermore, the low-Ca tolerance of P-pretreated seedlings was investigated under different pH conditions. The concentrations of phospholipids and pectins in the roots of rice receiving −P pretreatment were lower than those receiving +P pretreatment. As expected, seedlings receiving the −P pretreatment showed enhanced Al tolerance, accompanied by the decrease in Al accumulation in their roots and shoots. This low P-induced enhanced Al tolerance was not explained by enhanced antioxidant activities or organic acid secretion from roots but by the decrease in phospholipid and pectin concentrations in the roots. In addition, low-Ca tolerance of the roots was enhanced by the −P pretreatment under low pH conditions. This low P-induced enhancement of low-Ca tolerance may be related to the lower Ca requirement to maintain PM and cell wall structures in roots of rice with fewer phospholipids and pectins.  相似文献   

17.
Filled hydrogel particles can be used to encapsulate, protect, and deliver lipophilic components. In this study, we investigated the influence of preparation conditions on the size of filled hydrogel particles created using biopolymer phase separation and enzymatic cross-linking. We then investigated the stability of these particles to external stresses: pH (pH 2–8); heat (40°–90 °C, 20 min); sodium chloride (0–500 mM); and calcium chloride (0–8 mM). Filled hydrogel particles were fabricated as follows: (i) high methoxy pectin, sodium caseinate, and caseinate-coated lipid droplets were mixed at pH 7 under conditions where phase separation due to thermodynamic incompatibility occurred; (ii) this mixture was acidified (pH 5) to induce adsorption of anionic pectin molecules around lipid-filled caseinate-rich particles; (iii) the caseinate within the particles was enzymatically cross-linked using transglutaminase. Three mixing conditions (0, 100, and 1,000 rpm) were tested during particle acidification. Particle size measurements indicated that larger particles were formed at 0 and 100 rpm than at 1,000 rpm. Under high pH conditions (pH 6–8), particles cross-linked with transglutaminase remained intact while control particles (not cross-linked) disintegrated. The addition of calcium to both control and cross-linked particles resulted in system gelation above 4 mM calcium chloride. Control and cross-linked particles remained stable to heating and to the addition of sodium chloride. Results from this study demonstrate the versatility and robustness of this delivery system for lipophilic bioactives.  相似文献   

18.
Gelatin is used as an ingredient in both food and non-food industries as a gelling agent, stabilizer, thickener, emulsifier, and film former. Porcine skins, bovine hides, and cattle bones are the most common sources of gelatin. However, mammalian gelatins are rejected by some consumers due to social, cultural, religious, or health-related concerns. In the present study, gelatin was obtained from camel skin as an alternative source using a combination of processing steps. Central composite design combined with response surface methodology was used to achieve high gelatin yields under different extraction conditions: temperatures of 40, 60, and 80 °C; pH values of 1, 4, and 7; and extraction times of 0.5, 2.0, and 3.5 min. Maximum gelatin yield from camel skin (29.1%) was achieved at 71.87 °C and pH 5.26 after 2.58 min. The extracted gelatin samples were characterized for amino acid profile, foaming capacity, film formation, foam stability, and gel strength (Bloom value). Gelatin nanoparticles were produced, and their morphology and zeta potential were determined. Bloom value of the camel skin gelatin was 340 g. Amino acid analysis revealed that the extracted gelatin showed high glycine and proline contents. Analysis of camel skin gelatin nanoparticle and functional properties revealed high suitability for food and non-food applications, with potential use in the growing global halal food market.  相似文献   

19.
Kozak D  Chen A  Bax J  Trau M 《Biofouling》2011,27(5):497-503
The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m(-2)) of three molecular weights (10,000, 66,900, 400,000 g mol(-1)) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~5 to 0.5 mg m(-2) with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (~2 mg m(-2)) indicating ternary adsorption of the smaller protein within the dextran layer.  相似文献   

20.
Electrosorption of pectin onto casein micelles   总被引:2,自引:0,他引:2  
Pectin, a polysaccharide derived from plant cells of fruit, is commonly used as stabilizer in acidified milk drinks. To gain a better understanding of the way that pectin stabilizes these drinks, we studied the adsorption and layer thickness of pectin on casein micelles in skim milk dispersions. Dynamic light scattering was used to measure the layer thickness of adsorbed pectin onto casein micelles in situ during acidification. The results indicate that the adsorption of pectin onto casein micelles is multilayered and takes place at and below pH 5.0. Renneting, i.e., cleaving-off kappa-casein from the casein micelles, did not alter the adsorption pH. It did, however, show that pectin arrests the rennet-induced flocculation of casein micelles below pH 5.0. From the findings we concluded the attachment of pectin onto casein micelles is driven by electrosorption. Adsorption measurements confirmed the multilayered nature of the adsorption of pectin onto casein micelles. Both the adsorbed amount and the layer thickness increased with decreasing pH in the relevant range 3.5-5.0. The phase behavior of a casein micelles/pectin mixture was determined and could be explained in terms of thermodynamic incompatibility being relevant above pH 5.0 and adsorption, leading to either stabilization and bridging, being relevant below pH 5.0. The results confirm that electrosorption is the driving force for the adsorption of pectin onto casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号