首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we have reported about a novel stress response protein (pY or RaiA) associated with Escherichia coli ribosomes that inhibits translation at the aminoacyl-tRNA binding stage. Here we show that leucine misincorporation during in vitro poly(U) translation is inhibited by this protein much stronger than the incorporation of phenylalanine. The miscoding counteraction by RaiA is especially strong at the concentrations of magnesium ions close to those observed in vivo and diminishes at higher magnesium concentrations. The results obtained suggest that the anti-miscoding activity of RaiA could be the main function of the protein, rather than the inhibition of translation. The role of the protein in adaptation of cells to environmental stress is discussed.  相似文献   

2.
Escherichia coli protein Y (pY) binds to the small ribosomal subunit and stabilizes ribosomes against dissociation when bacteria experience environmental stress. pY inhibits translation in vitro, most probably by interfering with the binding of the aminoacyl-tRNA to the ribosomal A site. Such a translational arrest may mediate overall adaptation of cells to environmental conditions. We have determined the 3D solution structure of a 112-residue pY and have studied its backbone dynamic by NMR spectroscopy. The structure has a betaalphabetabetabetaalpha topology and represents a compact two-layered sandwich of two nearly parallel alpha helices packed against the same side of a four-stranded beta sheet. The 23 C-terminal residues of the protein are disordered. Long-range angular constraints provided by residual dipolar coupling data proved critical for precisely defining the position of helix 1. Our data establish that the C-terminal region of helix 1 and the loop linking this helix with strand beta2 show significant conformational exchange in the ms- micro s time scale, which may have relevance to the interaction of pY with ribosomal subunits. Distribution of the conserved residues on the protein surface highlights a positively charged region towards the C-terminal segments of both alpha helices, which most probably constitutes an RNA binding site. The observed betaalphabetabetabetaalpha topology of pY resembles the alphabetabetabetaalpha topology of double-stranded RNA-binding domains, despite limited sequence similarity. It appears probable that functional properties of pY are not identical to those of dsRBDs, as the postulated RNA-binding site in pY does not coincide with the RNA-binding surface of the dsRBDs.  相似文献   

3.
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.  相似文献   

4.
To determine whether ribosomes have a role in the postfertilization activation of protein synthesis in sea urchin eggs, we measured the translational activity of ribosomes isolated from unfertilized eggs and embryos of Strongylocentrotus purpuratus. Numerous previous studies have indicated few if any differences in the activity of such ribosomes. However, by using improved physiological isolation and in vitro conditions, we have found important differences in the activities of egg and embryo ribosomes. Ribosomes obtained from blastula polyribosomes were active in translating reticulocyte mRNA in a ribosome-dependent cell-free translation system, whereas ribosomes obtained from unfertilized eggs became fully active only after a characteristic, reproducible delay of up to 15 min at 26°C. The extent of this delay varied with incubation pH, but not with concentrations of K+, Mg2+, initiation factors, or mRNA. However, at incubation pH between 6.90 and 7.65, the egg ribosomes were always less active than blastula ribosomes.  相似文献   

5.
Ribosomes synthesizing secretory and membrane proteins are bound to the endoplasmic reticulum (ER) membrane and attach to ribosome-associated membrane proteins such as the Sec61 complex, which forms the protein-conducting channel in the membrane. The ER membrane-resident Hsp40 protein ERj1 was characterized as being able to recruit BiP to ribosomes in solution and to regulate protein synthesis in a BiP-dependent manner. Here, we show that ERj1 and Sec61 are associated with ribosomes at the ER of human cells and that the binding of ERj1 to ribosomes occurs with a binding constant in the picomolar range and is prevented by pretreatment of ribosomes with RNase. However, the affinity of ERj1 for ribosomes dramatically changes upon binding of BiP. This modulation by BiP may be responsible for the dual role of ERj1 at the ribosome, i.e. acting as a recruiting factor for BiP and regulating translation.  相似文献   

6.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that depurinates the highly conserved α-sarcin/ricin loop in the large rRNA. Here, using site-directed mutagenesis and systematic deletion analysis from the 5′ and the 3′ ends of the PAP cDNA, we identified the amino acids important for ribosome depurination and cytotoxicity of PAP. Truncating the first 16 amino acids of PAP eliminated its cytotoxicity and the ability to depurinate ribosomes. Ribosome depurination gradually decreased upon the sequential deletion of C-terminal amino acids and was abolished when a stop codon was introduced at Glu-244. Cytotoxicity of the C-terminal deletion mutants was lost before their ability to depurinate ribosomes. Mutations in Tyr-123 at the active site affected cytotoxicity without altering the ribosome depurination ability. Total translation was not inhibited in yeast expressing the non-toxic Tyr-123 mutants, although ribosomes were depurinated. These mutants depurinated ribosomes only during their translation and could not depurinate ribosomes in trans in a translation-independent manner. A mutation in Leu-71 in the central domain affected cytotoxicity without altering the ability to depurinate ribosomes in trans and inhibit translation. These results demonstrate that the ability to depurinate ribosomes in trans in a catalytic manner is required for the inhibition of translation, but is not sufficient for cytotoxicity.  相似文献   

7.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

8.
Synthesis and assembly of ribosomal proteins into mature ribosomes persist late after infection of cells with herpes simplex virus type 1, while synthesis of β-actin is drastically shut off. Since mRNAs encoding ribosomal proteins and β-actin undergo concomitant degradation in infected HeLa cells, we have advanced the hypothesis that translation of the remaining mRNAs is differentially controlled after infection. The behaviour of mRNAs for three ribosomal proteins and for β-actin was investigated during the course of infection. In uninfected cells, β-actin mRNAs are associated with large polyribosomes, while only a part of ribosomal protein mRNAs are present in polyribosomes. In the course of infection, β-actin mRNAs are released from the ribosomes and are sequestered with 40S ribosomal subunits. Simultaneously, ribosomal protein mRNAs become associated with an increased number of ribosomes, even late in infection. In addition, virally induced phosphorylation of ribosomal protein S6 is more efficient in pre-existing ribosomes than in newly assembled ribosomes. These results indicate that in infected cells (i) translation of β-actin mRNA is selectively inhibited at a step necessary for binding the 60S ribosomal subunits; (ii) the rate of initiation of translation of ribosomal protein mRNAs increases after infection; and (iii) it is likely that translation of ribosomal protein mRNAs takes place preferentially on pre-existing ribosomes. Received: 5 February 1997 / Accepted: 28 May 1997  相似文献   

9.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

10.
LEPA is one of the most conserved translation factors and is found from bacteria to higher plants. However, the physiological function of the chloroplast LEPA homolog in higher plants remains unknown. Herein, we demonstrate the physiological role of cpLEPA in enabling efficient photosynthesis in higher plants. The cplepa-1 mutant displays slightly high chlorophyll fluorescence and pale green phenotypes under normal growth conditions. The growth of the cplepa-1 mutant is reduced when grown on soil, and greater reduction is observed under intense light illumination. Photosynthetic activity is impaired in the cplepa-1 mutants, which is reflected in the decreased steady-state levels of chloroplast proteins. In vivo protein labeling experiments explained the decrease in the steady-state levels of chloroplast proteins. An abnormal association of the chloroplast-encoded mRNAs with ribosomes suggests that the protein synthesis deficiencies in cplepa-1 are due to defects in translation initiation in the chloroplasts. The cpLEPA protein appears to be an essential translation factor that promotes the efficiency of chloroplast protein synthesis.  相似文献   

11.
The translational efficiency of wheat ribosomes was studied as a function of an in vivo temperature pretreatment of wheat seedlings (Triticum aestivum L.). Ribosomes were isolated from heat-pretreated (36°C) and reference (4°C, 20°C) wheat seedlings. The efficiency of the ribosomes in translating polyuridylic acid was assayed. Ribosomes from heat-pretreated seedlings exhibit a threefold enhanced incorporation rate of phenylalanine as compared to ribosomes from wheat seedlings adapted to 20 or 4°C. This difference develops within 24 hours after onset of the heat treatment of seedlings following a 3 hour lag phase. The temperature induced changes can be traced back to the cytoplasmic ribosomes, since cycloheximide inhibits translation almost completely. Thermal inactivation of ribosomes occurs at 45°C, irrespective of the temperature pretreatment of the wheat seedlings. Specific differences in the yield of ribosomes, in the polyribosomal profiles, and in the apparent Arrhenius' activation energy of protein synthesis were observed depending on the age and the temperature pretreatments. The results presented here are considered an important molecular correlation to phenotypical temperature adaptation of in vivo protein synthesis in wheat (M Weidner, C Mathée, FK Schmitz 1982 Plant Physiol 69: 1281-1288).  相似文献   

12.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   

13.
In eukaryotic cells, protein synthesis is compartmentalized; mRNAs encoding secretory/membrane proteins are translated on endoplasmic reticulum (ER)-bound ribosomes, whereas mRNAs encoding cytosolic proteins are translated on free ribosomes. mRNA partitioning between the two compartments occurs via positive selection: free ribosomes engaged in the translation of signal sequence-encoding mRNAs are trafficked from the cytosol to the ER. After translation termination, ER-bound ribosomes are thought to dissociate, thereby completing a cycle of mRNA partitioning. At present, the physiological basis for termination-coupled ribosome release is unknown. To gain insight into this process, we examined ribosome and mRNA partitioning during the unfolded protein response, key elements of which include suppression of the initiation stage of protein synthesis and polyribosome breakdown. We report that unfolded protein response (UPR)-elicited polyribosome breakdown resulted in the continued association, rather than release, of ER-bound ribosomes. Under these conditions, mRNA translation in the cytosol was suppressed, whereas mRNA translation on the ER was sustained. Furthermore, mRNAs encoding key soluble stress proteins (XBP-1 and ATF-4) were translated primarily on ER-bound ribosomes. These studies demonstrate that ribosome release from the ER is termination independent and identify new and unexpected roles for the ER compartment in the translational response to induction of the unfolded protein response.  相似文献   

14.
15.
The effect of 7-methylguanosine 5'-monophosphate (pm7G) on mRNA translation was examined in the wheat germ and rabbit reticulocyte cell-free systems. Differences between the two cell extracts with respect to inhibition of translation by pm7G can be attributed to different conditions commonly used for in vitro protein synthesis. Inhibition of globin mRNA translation by pm7G is strongly influenced by the concentration of potassium salt and to a lesser extent by incubation temperature. The effectiveness of the inhibitor increases with potassium salt concentration and diminishes with increasing temperature. Translation is inhibited by pm7G at physiological K+ concentration in both cell-free systems in that only the rate of binding of mRNA to ribosomes is affected by the inhibitor, not the extent of binding. Translation of different capped mRNAs is affected differently by pm7G, but this appears to be property of the mRNA rather than the translation system. These results indicate that while the 5'-terminal cap structure may be more important for translation of some mRNA's than others, this structure functions in translation of capped mRNAs in all types of cells.  相似文献   

16.
Apicomplexan protists such as Plasmodium and Toxoplasma contain a mitochondrion and a relic plastid (apicoplast) that are sites of protein translation. Although there is emerging interest in the partitioning and function of translation factors that participate in apicoplast and mitochondrial peptide synthesis, the composition of organellar ribosomes remains to be elucidated. We carried out an analysis of the complement of core ribosomal protein subunits that are encoded by either the parasite organellar or nuclear genomes, accompanied by a survey of ribosome assembly factors for the apicoplast and mitochondrion. A cross-species comparison with other apicomplexan, algal and diatom species revealed compositional differences in apicomplexan organelle ribosomes and identified considerable reduction and divergence with ribosomes of bacteria or characterized organelle ribosomes from other organisms. We assembled structural models of sections of Plasmodium falciparum organellar ribosomes and predicted interactions with translation inhibitory antibiotics. Differences in predicted drug–ribosome interactions with some of the modelled structures suggested specificity of inhibition between the apicoplast and mitochondrion. Our results indicate that Plasmodium and Toxoplasma organellar ribosomes have a unique composition, resulting from the loss of several large and small subunit proteins accompanied by significant sequence and size divergences in parasite orthologues of ribosomal proteins.  相似文献   

17.
During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the “trans-translation” rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.  相似文献   

18.
Ribosomal protein L9 is a component of all eubacterial ribosomes, yet deletion strains display only subtle growth defects. Although L9 has been implicated in helping ribosomes maintain translation reading frame and in regulating translation bypass, no portion of the ribosome-bound protein seems capable of contacting either the peptidyltransferase center or the decoding center, so it is a mystery how L9 can influence these important processes. To reveal the physiological roles of L9 that have maintained it in evolution, we identified mutants of Escherichia coli that depend on L9 for fitness. In this report, we describe a class of L9-dependent mutants in the ribosome biogenesis GTPase Der (EngA/YphC). Purified mutant proteins were severely compromised in their GTPase activities, despite the fact that the mutations are not present in GTP hydrolysis sites. Moreover, although L9 and YihI complemented the slow-growth der phenotypes, neither factor could rescue the GTPase activities in vitro. Complementation studies revealed that the N-terminal domain of L9 is necessary and sufficient to improve the fitness of these Der mutants, suggesting that this domain may help stabilize compromised ribosomes that accumulate when Der is defective. Finally, we employed a targeted degradation system to rapidly deplete L9 from a highly compromised der mutant strain and show that the L9-dependent phenotype coincides with a cell division defect.  相似文献   

19.
Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Δ) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Δ yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.  相似文献   

20.
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号