共查询到20条相似文献,搜索用时 15 毫秒
1.
Kanchan Devkota Brian Lohse Camilla Nyby Jakobsen Jens Berthelsen Rasmus Prætorius Clausen 《Analytical biochemistry》2015
A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye and a quencher, respectively. When lysine-9 residues in the peptides were methylated, they were protected from cleavage by endoproteinase–EndoLysC, whereas unmethylated peptides were cleaved, resulting in an increase in fluorescent intensity. 相似文献
2.
DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5'-PO(4) and 3'-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD(+)-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer-based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD(+)-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme. 相似文献
3.
4.
Ingo H. Engels Jörg Buddenkotte Andrew Schumacher Jeremy S. Caldwell Achim Brinker 《Analytical biochemistry》2009,390(1):85-87
Neural precursor cell expressed, developmentally down-regulated gene 8 (NEDD8) is a recently discovered ubiquitin-like posttranslational modifier. NEDD8 acts predominantly as a regulator of ubiquitin-protein ligases and as a decoy for proteins targeted for proteasomal degradation. It thereby controls key events in cell cycle progression and embryogenesis. Deneddylase-1 (DEN1/NEDP1/SENP8) features a selective peptidase activity converting the proNEDD8 precursor to its mature form and an isopeptidase activity deconjugating NEDD8 from substrates such as cullins and p53. In this study, we describe a high-throughput screening (HTS)-compatible time-resolved fluorescent resonance energy transfer (TR-FRET) assay measuring the peptidase activity of DEN1. 相似文献
5.
A.M. Kaufmann 《Analytical biochemistry》2009,386(1):91-1628
Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders—Niemann-Pick type C, mucolipidosis type IV, and Sandhoff’s disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies. 相似文献
6.
A homogeneous, fluorescence resonance energy transfer (FRET)-based DNA polymerase assay that is suitable for high-throughput screening for inhibitors, and can also be used for steady-state kinetic investigations, is described. The activity, kinetic mechanism, and processivity of the isolated alpha subunit of DNA polymerase III, the product of the dnaE gene, from the gram-negative pathogen Haemophilus influenzae were investigated using the FRET assay. 相似文献
7.
A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors 总被引:1,自引:0,他引:1
The control of cell death is an intricate process involving a multitude of intracellular modulators. Among these molecules, the caspases have a central role and have become an interesting group of enzymes in the current pharmaceutical industry. We have developed a novel dual-step fluorescence energy transfer-based separation-free assay method for the primary screening of caspase-3 inhibitors in vitro. This method relies on fluorescent europium(III)-chelate-doped nanoparticle donors coated with streptavidin in conjunction with a dual-labeled (N-terminal Alexa Fluor 680 fluorescent acceptor and C-terminal BlackBerry Quencher 650) caspase-3-specific peptide substrate modified with a biotinyl moiety. In the assay, the nanoparticle donor excites the fluorescent acceptor, whose emission is monitored with time-resolved measurements. The intensity of the acceptor reflects the activity of the enzyme because the intensity is controlled by the proximity of the quencher. Owing to the dual-step fluorescence resonance energy transfer, this method enables a sensitized fluorescence signal directly proportional to the extent of enzymatic activity with relatively background fluorescence-free measurements in the event of complete enzyme inhibition. The generic nanoparticle donors further promote versatility and cost-efficiency of the method. The performance evaluated as the inhibitor (Z-DEVD-FMK) dose-response curve (IC(50) value of approximately 12 nM) was in good agreement with that of the recent methods found in literature. This assay serves as a model application proving the feasibility of the europium-chelate-doped nanoparticle labels in a homogeneous assay for proteolytic activity. 相似文献
8.
Fluorescence recovery after photobleaching of muscarinic receptors and G protein subunits tagged with cyan or yellow fluorescent protein showed that receptors and G proteins were mobile and not immobilized on the cell membrane. The cyan fluorescent protein-tagged Galpha and yellow fluorescent protein-tagged Gbeta subunits were used to develop sensors that coupled selectively with the M2 and M3 muscarinic receptors. In living Chinese hamster ovary cells, imaging showed that sensors emitted a fluorescence resonance energy transfer signal that was abrogated on receptor activation. When sequentially activated with highly expressed muscarinic receptors and endogenous receptors expressed at low levels, sensor molecules were sensitive to the sequence of activation and the receptor numbers. The results distinguish between models proposing that receptor and G protein types interact freely with each other on the cell membrane or that they function as mutually exclusive multimolecular complexes by providing direct support for the former model in these cells. 相似文献
9.
Miho Suzuki Ichiro Sakata Takafumi Sakai Hiroaki Tomioka Koichi Nishigaki Marc Tramier Maïté Coppey-Moisan 《Analytical biochemistry》2015
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. 相似文献
10.
Lin CI Hsieh CH Lee SS Lee WS Chang-Chien GP Pan CY Lee H 《Journal of biomedical science》2008,15(6):833-840
Dioxins comprise a group of compounds which contain a double aromatic ring-like structure. They are among the most prevalent
and toxic environmental pollutants. Accumulation of dioxins in human tissues poses a potential threat to human health. Currently,
analytical chemical procedures dominate dioxin-detection protocols. In this study, we established a fluorescence resonance
energy transfer (FRET)-based dioxin-detection bioassay. Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT)
fused-cyan fluorescent protein (CFP) and -yellow fluorescent protein (YFP) constructed were transiently co-transfected into
rat hepatoma cell line, H4IIEC3 cells. Our results showed that no FRET signals were detected in AHR-CFP- and ARNT-YFP-transfected
H4IIEC3 cells. However, dioxin treatments upregulated FRET signals in these transfected cells in a dose-dependent manner.
This work highlighted the potential of FRET technique in the detection of dioxin-like compounds. 相似文献
11.
12.
13.
Peptidoglycan biosynthesis is an essential process in bacteria and is therefore a suitable target for the discovery of new antibacterial drugs. One of the last cytoplasmic steps of peptidoglycan biosynthesis is catalyzed by the integral membrane protein MraY, which attaches soluble UDP-N-acetylmuramoyl-pentapeptide to the membrane-bound acceptor undecaprenyl phosphate. Although several natural product-derived inhibitors of MraY are known, none have the properties necessary to be of clinical use as antibacterial drugs. Here we describe a novel, homogeneous, fluorescence resonance energy transfer-based MraY assay that is suitable for high-throughput screening for novel MraY inhibitors. The assay allows for continuous measurement, or it can be quenched prior to measurement. 相似文献
14.
Hall B McLean MA Davis K Casanova JE Sligar SG Schwartz MA 《Analytical biochemistry》2008,374(2):243-249
The involvement of the small GTPase Arf6 in Rac activation, cell migration, and cancer invasiveness suggests that it is activated in a spatially and temporally regulated manner. Small GTPase activation has been imaged in cells using probes in which the GTPase and a fragment of a downstream effector protein are fused to fluorescent reporter proteins that constitute a fluorescence resonance energy transfer (FRET) donor/acceptor pair. Unlike other Ras family GTPases, the N terminus of Arf6 is critical for membrane targeting and, thus, cannot be modified by fusion to a fluorescent protein. We found that the previously described C-terminal green fluorescent protein (GFP) derivative also shows diminished membrane targeting. Therefore, we inserted a fluorescent protein into an inert loop within the Arf6 sequence. This fusion showed normal membrane targeting, nucleotide-dependent interaction with the downstream effector GGA3, and normal regulation by a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF). Using the recently developed CyPET/YPET fluorescent proteins as a FRET pair, we found that Arf6-CyPET underwent efficient energy transfer when bound to YPET-GGA3 effector domain in intact cells. The addition of platelet-derived growth factor (PDGF) to fibroblasts triggered a rapid and transient increase in FRET, indicative of Arf6 activation. These reagents should be useful for investigations of Arf6 activation and function. 相似文献
15.
Detection of epitope-tagged proteins in flow cytometry: fluorescence resonance energy transfer-based assays on beads with femtomole resolution. 总被引:2,自引:0,他引:2
Epitope tagging of expressed proteins is a versatile tool for the detection and purification of the proteins. This approach has been used in protein-protein interaction studies, protein localization, and immunoprecipitation. Among the most popular tag systems is the FLAG epitope tag, which is recognized by three monoclonal antibodies M1, M2, and M5. We describe novel approaches to the detection of epitope-tagged proteins via fluorescence resonance energy transfer on beads. We have synthesized and characterized biotinylated and fluorescein-labeled FLAG peptides and examined the binding of FLAG peptides to commercial streptavidin beads using flow cytometric analysis. A requirement of assay development is the elucidation of parameters that characterize the binding interactions between component systems. We have thus compiled a set of Kd values determined from a series of equilibrium binding experiments with beads, peptides, and antibodies. We have defined conditions for binding biotinylated and fluoresceinated FLAG peptides to beads. Site occupancies of the peptides were determined to be on the order of several million sites per bead and Kd values in the 0.3-2.0 nM range. The affinity for antibody attachment to peptides was determined to be in the low nanomolar range (less than 10 nM) for measurements on beads and solution. We demonstrate the applicability of this methodology to assay development, by detecting femtomole amounts of N-terminal FLAG-bacteria alkaline phosphatase fusion protein. These characterizations form the basis of generalizable and high throughput assays for proteins with known epitopes, for research, proteomic, or clinical applications. 相似文献
16.
Shiro Kitano Mashimo Nakayama Akio Yamane Yusuke Tsukahara Masahiko Amano 《Analytical biochemistry》2011,408(2):197
Molecularly targeted agents for cancer therapy are recognized as being effective and are gaining in popularity. However, the efficacy of the agents depends on the status of the targeted molecule such as the number of molecules expressed, activity, and mutation. Therefore, the use of companion diagnostics for investigating the status of the targeted molecule prior to therapy is highly important. We developed a simple and cost-effective somatic mutation detection method called the fluorescence resonance energy transfer-based preferential homoduplex formation assay (FRET–PHFA). By using double-stranded labeled DNA and fluorescence measurement with thermal control, this method provides higher reproducibility, easier handling, less risk for contamination, shorter assay time (only ∼15 min), and less cost compared with conventional PHFA. Here we report the evaluation of FRET–PHFA on the detection of multiallelic KRAS mutations in codons 12 and 13 compared with the TheraScreen clinical diagnostics kit. We found that FRET–PHFA detected KRAS mutations (1.25–50%) from all cell line DNA titration samples. 相似文献
17.
Joyce Kwan Alden Ling Eva Papp David Shaw J. Michael Bradshaw 《Analytical biochemistry》2009,395(2):256-262
Novel biochemical strategies are needed to identify the next generation of protein kinase inhibitors. One promising new assay format is a competition binding approach that employs time-resolved fluorescence resonance energy transfer (TR–FRET). In this assay, a FRET donor is bound to the kinase via a purification tag, whereas a FRET acceptor is bound via a tracer-labeled inhibitor. Displacement of the tracer by an unlabeled inhibitor eliminates FRET between the fluorophores and provides a readout on binding. Although promising, this technique has so far been limited in applicability in part by a lack of signal strength is some cases and also by an inability to predict whether a particular tagging strategy will show robust FRET. In this work, we sought to better understand the factors that give rise to a strong FRET signal in this assay. We determined the magnitude of FRET for several tyrosine kinases using different purification tags (biotin, glutathione S-transferase [GST], and His) placed at either the N terminus or C terminus of the kinase. It was observed that coupling the FRET acceptor to the kinase C terminus using a biotin/streptavidin interaction resulted in the greatest increase in FRET. Specifically, for multiple kinases, the signal/background ratio was at least 3-fold better using C-terminal biotinylation compared with tagging at the N terminus using a His/anti-His antibody or GST/anti-GST antibody interaction. In one case, the FRET signal using C-terminal biotin tagging was more than 150-fold over background. This strong FRET signal facilitated development of improved inhibitor binding assays that required only tens of picomolar enzyme or tracer-labeled inhibitor. Together, these results indicate that C-terminal biotinylation is a promising tagging strategy for developing an optimal FRET-based competition binding assay for tyrosine kinases. 相似文献
18.
2-Oxoglutarate (2OG) is a metabolite from the highly conserved Krebs cycle and not only plays a critical role in metabolism but also acts as a signaling molecule in a variety of organisms. Environmental inorganic nitrogen is reduced to ammonium by microorganisms, whose metabolic pathways involve the conversion of 2OG to glutamate and glutamine. Tracking of 2OG in real time would be useful for studies on cell metabolism and signal transduction. Here, we developed a genetically encoded 2OG biosensor based on fluorescent resonance energy transfer by inserting the functional 2OG-binding domain GAF of the NifA protein between the fluorescence resonance energy transfer (FRET) pair YFP/CFP. The dynamic range of the sensors is 100 μM to 10 mM, which appeared identical to the physiological range observed in E. coli. We optimized the peptide lengths of the binding domain to obtain a sensor with a maximal ratio change of 0.95 upon 2OG binding and demonstrated the feasibility of this sensor for the visualization of metabolites both in vitro and in vivo. 相似文献
19.
A fluorescence resonance energy-transfer (FRET) sensing system for maltose based on E. coli maltose binding protein (MBP) is demonstrated. The FRET donor portion of the sensing system consists of MBP modified with long wavelength-excitable cyanine dyes (Cy3 or Cy3.5). The novel acceptor portion of the sensor consists of beta-cyclodextrin (beta-CD) modified with either the cyanine dye Cy5 or the dark quencher QSY9. Binding of the modified beta-CD to dye-conjugated MBP results in assembly of the FRET complex. Added maltose displaces the beta-CD-dye adduct and disrupts the FRET complex, resulting in a direct change in fluorescence of the donor moiety. In the use of these FRET pairs, MBP dissociation values for maltose were estimated (0.14-2.90 microM). Maltose limits of detection were in the 50-100 nm range. 相似文献
20.
Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling 总被引:4,自引:0,他引:4
The temporal and spatial control of Rho GTPase signaling pathways is a central issue in understanding the molecular mechanisms that generate complex cellular movements. The Rho protein Cdc42 induces a significant conformational change in its downstream effector, the Wiskott-Aldrich syndrome protein (WASP). On the basis of this conformational change, we have created a series of single-molecule sensors for both active Cdc42 and Cdc42 guanine nucleotide exchange factors (GEFs) that utilize fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent proteins. In vitro, the Cdc42 sensors produce up to 3.2-fold FRET emission ratio changes upon binding active Cdc42. The GEF sensors yield up to 1.7-fold changes in FRET upon exchange of GDP for GTP. The GEF-catalyzed rate of nucleotide exchange for the GEF sensor is indistinguishable from that of wild-type Cdc42, but GAP-catalyzed nucleotide hydrolysis is slowed approximately 16-fold. In vivo, both sensors faithfully report on Cdc42 and/or Cdc42-GEF activity. These results establish the successful creation of rationally designed and genetically encoded tools that can be used to image the activity of biologically and medically important molecules in living systems. 相似文献