首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When and where proteins associate is a central question in many biomolecular studies. F?rster resonance energy transfer (FRET) measurements can be used to address this question when the interacting proteins are labeled with appropriate donor and acceptor fluorophores. We describe an improved method to determine FRET efficiency that uses a mode-locked laser, a confocal microscope and a streak camera. We applied this method to study the association of alpha and beta(1) subunits of the human cardiac sodium channel. The subunits were tagged with the cyan and yellow variants of the green fluorescent protein (GFP) and expressed in human embryonic kidney (HEK293) cells. Pronounced FRET between the channel subunits in the endoplasmic reticulum (ER) suggested that the subunits associate before they reach the plasma membrane. The described method allows simultaneous measurement of donor and acceptor fluorescence decays and provides an intrinsically validated estimate of FRET efficiency.  相似文献   

2.
We report on a novel technique to develop an optical immunosensor based on fluorescence resonance energy transfer (FRET). IgG antibodies were labeled with acceptor fluorophores while one of three carrier molecules (protein A, protein G, or F(ab')2 fragment) was labeled with donor fluorophores. The carrier molecule was incubated with the antibody to allow specific binding to the Fc portion. The labeled antibody-protein complex was then exposed to specific and nonspecific antigens, and experiments were designed to determine the 'in solution' response. The paper reports the results of three different donor-acceptor FRET pairs, fluorescein isothiocyanate/tetramethylrhodamine isothiocyanate, Texas Red/Cy5, and Alexa Fluor 546/Alexa Fluor 594. The effects of the fluorophore to protein conjugation ratio (F/P ratio) and acceptor to donor fluorophore ratios between the antibody and protein (A/D ratio) were examined. In the presence of specific antigens, the antibodies underwent a conformational change, resulting in an energy transfer from the donor to the acceptor fluorophore as measured by a change in fluorescence. The non-specific antigens elicited little or no changes. The Alexa Fluor FRET pair demonstrated the largest change in fluorescence, resulting in a 35% change. The F/P and A/D ratio will affect the efficiency of energy transfer, but there exists a suitable range of A/D and F/P ratios for the FRET pairs. The feasibility of the FRET immunosensor technique was established; however, it will be necessary to immobilize the complexes onto optical substrates so that consistent trends can be obtained that would allow calibration plots.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

4.
The development of a dual receptor detection method for enhanced biosensor monitoring was investigated by analyzing potential fluorescent resonance energy transfer (FRET) pairs. The dual receptor scheme requires the integration of a chemical transducer system with two unique protein receptors that bind to a single biological agent. The two receptors are tagged with special molecular groups (donors and acceptors fluorophores) while the chemical transduction system relies on the well-known mechanisms of FRET. During the binding event, the two FRET labeled receptors dock at the binding sites on the surface of the biological agent. The resulting close proximity of the two fluorophores upon binding will initiate the energy transfer resulting in fluorescence. The paper focuses on the analysis and optimization of the chemical transduction system. A variety of FRET fluorophore pairs were tested in a spectrofluorimeter and promising FRET pairs were then tagged to the protein, avidin and its ligand, biotin. Due to their affinities, the FRET-tagged biomolecules combine in solution, resulting in a stable, fluorescent signal from the acceptor FRET dye with a simultaneous decrease in fluorescent signal from the donor FRET dye. The results indicate that the selected FRET pairs can be utilized in the development of dual receptor sensors.  相似文献   

5.
A family of genetically-encoded metabolite sensors has been constructed using bacterial periplasmic binding proteins (PBPs) linearly fused to protein fluorophores. The ligand-induced conformational change in a PBP allosterically regulates the relative distance and orientation of a fluorescence resonance energy transfer (FRET)-compatible protein pair. Ligand binding is transduced into a macroscopic FRET observable, providing a reagent for in vitro and in vivo ligand-measurement and visualization. Sensors with a higher FRET signal change are required to expand the dynamic range and allow visualization of subtle analyte changes under high noise conditions. Various observations suggest that factors other than inter-fluorophore separation contribute to FRET transfer efficiency and the resulting ligand-dependent spectral changes. Empirical and rational protein engineering leads to enhanced allosteric linkage between ligand binding and chromophore rearrangement; modifications predicted to decrease chromophore rotational averaging enhance the signal change, emphasizing the importance of the rotational freedom parameter kappa2 to FRET efficiency. Tighter allosteric linkage of the PBP and the fluorophores by linker truncation or by insertion of chromophores into the binding protein at rationally designed sites gave rise to sensors with improved signal change. High-response sensors were obtained with fluorescent proteins attached to the same binding PBP lobe, suggesting that indirect allosteric regulation during the hinge-bending motion is sufficient to give rise to a FRET response. The optimization of sensors for glucose and glutamate, ligands of great clinical interest, provides a general framework for the manipulation of ligand-dependent allosteric signal transduction mechanisms.  相似文献   

6.
F?rster resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for a variety of intracellular molecular events. Often, however, the poor dynamic range of such reporters prevents detection of subtle but physiologically relevant signals. Here we present a strategy for improving FRET efficiency between donor and acceptor fluorophores in a green fluorescent protein (GFP)-based protein indicator for cAMP. Such indicator is based on protein kinase A (PKA) and was generated by fusion of CFP and YFP to the regulatory and catalytic subunits of PKA, respectively. Our approach to improve FRET efficiency was to perform molecular dynamic simulations and modelling studies of the linker peptide (L11) joining the CFP moiety and the regulatory subunit in order to define its structure and use this information to design an improved linker. We found that L11 contains the X-Y-P-Y-D motif, which adopts a turn-like conformation that is stiffly conserved along the simulation time. Based on this finding, we designed a new linker, L22 in which the YPY motif was doubled in order to generate a stiffer peptide and reduce the mobility of the chromophore within the protein complex, thus favouring CFP/YFP dipole-dipole interaction and improving FRET efficiency. Molecular dynamic simulations of L22 showed, unexpectedly, that the conformational behaviour of L22 was very loose. Based on the analysis of the three principal conformational states visited by L22 during the simulation time, we modified its sequence in order to increase its rigidity. The resulting linker L20 displayed lower flexibility and higher helical content than L22. When inserted in the cAMP indicator, L20 yielded a probe showing almost doubled FRET efficiency and a substantially improved dynamic range.  相似文献   

7.
A biosensor that is portable and permits on-site analysis of samples would significantly reduce the large economical burden of food products recalls. A fiber optic portable biosensor utilizing the principle of fluorescence resonance energy transfer (FRET) was developed for fast detection of Salmonella typhimurium (S. typhimurium) in ground pork samples. Labeled antibody-protein G complexes were formed via the incubation of anti-Salmonella antibodies labeled with FRET donor fluorophores (Alexa Fluor 546) and protein G (PG) labeled with FRET acceptor fluorophores (Alexa Fluor 594). Utilizing silanization, the labeled antibodies-PG complexes were then immobilized on decladded, tapered silica fiber cores to form the evanescent wave-sensing region. The biosensors were tested in two different solutions: (1) PBS doped with S. typhimurium and (2) homogenized pork sample with S. typhimurium. The fiber probes tested in a S. typhimurium doped phosphate buffered solution demonstrated the feasibility of the biosensor for detecting S. typhimurium as well as determined the optimal packing density of the labeled antibody-PG complexes on the surface of fibers. The results showed that a packing density of 0.033 mg/ml produced the lowest limit of detection of 10(3)cells/ml with 8.2% change in fluorescence. The fiber probes placed in homogenized pork samples inoculated with S. typhimurium showed a limit of detection of 10(5)CFU/g with a 6.67% in fluorescence within a 5-min response time. These results showed that the FRET-based fiber optic biosensor can become a useful analytical tool for detection of S. typhimurium in real food samples.  相似文献   

8.
The method of fluorescence resonance energy transfer (FRET) is one of the most important techniques for measuring the distance between two fluorophores and for detecting the changes in protein structure under physiological conditions. The use of green fluorescent protein is also a powerful technology that has been used to elucidate dynamic molecular events. From these we have developed a novel method to determine the three-dimensional positions of fluorophores by combining the FRET data and other structural information available. Using this method, we could determine the ATP-induced changes of three-dimensional structure of truncated Dictyostelium myosin in solution. The myosin structure with ADP in solution was found to be similar to that of the crystal structure of MgADPBeFx-bound truncated Dictyostelium myosin (type I structure), whereas myosin with ATP in solution was similar to the crystal structure of MgAdPVi-bound one (type II structure). However, the crystal structure of MgADP-bound scallop myosin (type III structure) could not be explained by any of our FRET data under various conditions. This indicates that the type III crystal structure might represent a transient intermediate conformation that could not be detected using fluorescence energy transfer.  相似文献   

9.
We have been investigating a fluorescence dual binding biosensor to detect calpastatin. Calpastatin is a protein found in meat and it is a regulator of meat tenderness. The ability to accurately predict the calpastatin concentration of beef with a biological sensor at the time of grading would lead to a more accurate assessment of the overall palatability of beef when it reaches the consumer. Meat can then be labeled as tender or tough, which would greatly enhance meat processors' ability to grade meat, allowing them to recover lost revenue. The biosensor technique utilized the chemical transduction principle of fluorescence resonance energy transfer (FRET). FRET requires the use of two fluorophores, termed a donor and acceptor. In this study, the donor fluorophore was conjugated to the protein, mu-calpain, while the acceptor fluorophore was conjugated to a monoclonal antibody. The results showed that in the presence of calpastatin, the labeled mu-calpain and antibody would bind to calpastatin, reducing the distance between the two proteins and eliciting a measurable change in fluorescence. The FRET dual binding technique was tested in heated and unheated meat extract, and a limit of detection for calpastatin was 120 ng/ml in diluted heated meat extract with no significant response in the unheated meat extract. Stable response times were achieved within 5 min. The proof-of-principle of utilizing a FRET dual binding technique to detect calpastatin in heated meat extract has been established.  相似文献   

10.
To track malaria parasites for biological studies within the mosquito and mammalian hosts, we constructed a stably transformed clonal line of Plasmodium berghei, PbFluspo, in which sporogonic and pre‐erythrocytic liver‐stage parasites are autonomously fluorescent. A cassette containing the structural gene for the FACS‐adapted green fluorescent protein mutant 2 (GFPmut2), expressed from the 5′ and 3′ flanking sequences of the circumsporozoite (CS) protein gene, was integrated and expressed at the endogenous CS locus. Recombinant parasites, which bear a wild‐type copy of CS, generated highly fluorescent oocysts and sporozoites that invaded mosquito salivary glands and were transmitted normally to rodent hosts. The parasites infected cultured hepatocytes in vitro, where they developed into fluorescent pre‐erythrocytic forms. Mammalian cells infected by these parasites can be separated from non‐infected cells by fluorescence activated cell sorter (FACS) analysis. These fluorescent insect and mammalian stages of P. berghei should be useful for phenotypic studies in their respective hosts, as well as for identification of new genes expressed in these parasite stages.  相似文献   

11.
We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.  相似文献   

12.
We observed the expression of human c-fos mRNA in a living transfected Cos7 cell under a fluorescence microscope by detecting hybrid formed with two fluorescently labeled oligodeoxynucleotides (oligoDNAs) and c-fos mRNA in the cytoplasm. Two fluorescent oligoDNAs were prepared, each labeled with a fluorescence molecule different from the other. When two oligoDNAs hybridized to an adjacent sequence on the target mRNA, the distance between the two fluorophores became very close and fluorescence resonance energy transfer (FRET) occurred, resulting in changes in fluorescence spectra. To find sequences of high accessibility of c-fos RNA to oligoDNAs, several sites that included loop structures on the simulated secondary structure were selected. Each site was divided into two halves, and the pair of fluorescent oligoDNAs complementary to the sequence was synthesized. Each site was examined for the efficiency of hybridization to c-fos RNA by measuring changes in fluorescence spectra when c-fos RNA was added to the pair of oligoDNAs in solution. A 40 mer specific site was found, and the pair of oligoDNAs for the site were microinjected into Cos7 cells that expressed c-fos mRNA. To block oligoDNAs from accumulating in the nucleus, oligoDNA was bound to a macromolecule (streptavidin) to prevent passage of nuclear pores. Hybridization of the pair of oligoDNAs to c-fos mRNA in the cytoplasm was detected in fluorescence images indicating FRET.  相似文献   

13.
We simultaneously labeled ferritin with two Alexa Fluor fluorophores (AF350 and AF430). When both fluorophores label the same ferritin subunit, fluorescence resonance energy transfer (FRET) takes place from the excited AF350 to the acceptor AF430. By varying the number and the ratio of labeling fluorophores, we can modulate FRET such that the ferritin particles can exhibit multiple colors under UV illumination. Labeling of the ferritin shell does not affect the properties of the metallic core. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.  相似文献   

15.
The blue and green fluorescent proteins (BFP and GFP) have been fused at the N- and C-terminal ends, respectively, of the plasma membrane Ca(2+) pump (PMCA) isoform 4xb (hPMCA4xb). The fusion protein was successfully expressed in yeast and purified by calmodulin affinity chromatography. Despite the presence of the fused autofluorescent proteins BFP-PMCA-GFP performed similarly to the wild-type enzyme with respect to Ca(2+)-ATPase activity and sensitivity to calmodulin activation. In the autoinhibited state BFP-PMCA-GFP exhibited a significant intramolecular fluorescence resonance energy transfer (FRET) consistent with the location of the fluorophores at an average distance of 45A. The FRET intensity in BFP-PMCA-GFP decreased when the enzyme was activated either by Ca(2+)-calmodulin, partial proteolysis, or acidic lipids. Moreover, FRET decreased and became insensitive to calmodulin when hPMCA4xb was activated by mutation D170N in BFP-PMCA(D170N)-GFP. The results suggest that the ends of the PMCA are in close proximity in the autoinhibited conformation, and they separate or reorient when the PMCA achieves its final activated conformation.  相似文献   

16.
H(+)-ATPsynthases couple a transmembrane proton transport with ATP synthesis and ATP hydrolysis. Previously, the relative subunit movement during this process has been measured by fluorescence resonance energy transfer (FRET) between two organic fluorophores covalently bound to different subunits. To improve the photophysical stability, a luminescent CdSe/ZnS nanocrystal (quantum dot) was bound to the enzyme and an organic fluorophore, Alexa568, was used as fluorescence acceptor. Single-molecule spectroscopy with the membrane integrated labeled H(+)-ATPsynthase was carried out. Single-pair FRET indicates three different conformations of the enzyme. During ATP hydrolysis relative intramolecular subunit movements are observed in real time.  相似文献   

17.
Steady-state fluorescence anisotropy measurements can be used to detect fluorescence resonance energy transfer (FRET) between identical fluorophores (homo-FRET). However, the contribution of homo-FRET to the steady-state anisotropy must be discerned from those due to the orientational distribution and rotational diffusion, which so far has required photobleaching controls, largely precluding dynamic measurements in live cells. We describe a variation of steady-state anisotropy microscopy in which the contribution of homo-FRET is dynamically isolated from the total anisotropy by exploiting the loss of energy transfer that occurs at red-edge excitation. Excitation of enhanced green fluorescent protein (EGFP) at the red-edge of its absorption band shows the shift in the emission spectrum compared to main-band excitation that is characteristic for photo-selection of static low energy S(0)-S(1) transitions that fail to exhibit FRET. An experimental setup for steady-state fluorescent anisotropy microscopy is described that can be used to acquire anisotropy images in live cells at main-band and red-edge excitation of EGFP. We demonstrate in live cells homo-FRET suppression of protein fusion constructs that consist of two and three EGFP molecules connected by short linkers. This methodology represents a novel approach for the dynamic measurement of homo-FRET in live cells that will be of utility in the biological sciences to detect oligomerization and concentration dependent interactions between identically labeled molecules.  相似文献   

18.
19.
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method.  相似文献   

20.
We have used fluorescence resonance energy transfer (FRET) to follow the process of capsid disassembly for adenovirus (Ad) serotype 5 (Ad5) in living CHO-CAR cells. Ad5 were weakly labeled on their capsid proteins with FRET donor and acceptor fluorophores. A progressive decrease in FRET efficiency recorded during Ad5 uptake revealed that the time course of Ad5 capsid disassembly has two sequential protein dissociation rates with half-times of 3 and 60 min. Fluorescence anisotropy measurements of the segmental motions of fluorophores on Ad5 indicate that the first rate is linked to the detachment from the capsid of the protruding, flexible fiber proteins. The second rate was shown to report on the combined dissociation of protein IX, penton base, and hexons, which form the rigid icosahedral capsid shell. Fluorescence lifetime imaging microscopy measurements using a pH-sensitive probe provided information on the pH of the microenvironment of Ad5 particles during intracellular trafficking, and confirmed that the fast fiber dissociation step occurred at the onset of endocytosis. The slower dissociation phase was shown to coincide with the escape of Ad5 from endocytic compartments into the cytosol, and its arrival at the nuclear membrane. These results demonstrate a rapid, quantitative live-cell assay for the investigation of virus-cell interactions and capsid disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号