首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We report the construction of recombinant plasmids containing the dihydrofolate reductase structural gene (fol) from several trimethoprim-resistant mutants of Escherichia coli. Strains carrying some of these plasmids produced approximately 6% of their soluble cell protein as dihydrofolate reductase and are therefore excellent sources of the purified enzyme for inhibitor binding or mechanistic studies. The nucleotide sequence of the fol region from each of the plasmids was determined. A plasmid derived from a Ki mutant which produced a dihydrofolate reductase with lowered affinity for trimethoprim contained a mutation in the structural gene that altered the sequence of the polypeptide in a conserved region which is adjacent to the dihydrofolate binding site. Two other independently-isolated mutants which overproduced dihydrofolate reductase had a mutation in the-35 region of the fol promoter. One of them, strain RS35, was also temperature-sensitve for growth in minimal medium. This phenotype was shown to be the result of an additional mutation in a locus unlinked to fol by P1 transduction. The fol regions from two temperature-independent revertants of strain RS35 were sequenced. One of these had a mutation within the dihydrofolate reductase structural gene which altered some properties of the enzyme. This confirmed some previous enzymological data which suggested that some revertants of strain RS35 had mutations in fol (Sheldon 1977). These results suggest that dihydrofolate reductase interacts physically with some other essential gene product in E. coli.  相似文献   

2.
Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.  相似文献   

3.
A light cycler-based real-time PCR (LC-PCR) assay that amplifies the F57 sequence of Mycobacterium avium subsp. paratuberculosis was developed. This assay also includes an internal amplification control template to monitor the amplification conditions in each reaction. The targeted F57 sequence element is unique for M.avium subsp. paratuberculosis and is not known to exist in any other bacterial species. The assay specificity was demonstrated by evaluation of 10 known M. avium subsp. paratuberculosis isolates and 33 other bacterial strains. The LC-PCR assay has a broad linear range (2 × 101 to 2 ×106 copies) for quantitative estimation of the number of M. avium subsp. paratuberculosis F57 target copies in positive samples. To maximize the assay's detection sensitivity, an efficient strategy for isolation of M. avium subsp. paratuberculosis DNA from spiked milk samples was also developed. The integrated procedure combining optimal M. avium subsp. paratuberculosis DNA isolation and real-time PCR detection had a reproducible detection limit of about 10 M. avium subsp. paratuberculosis cells per ml when a starting sample volume of 10 ml of M. avium subsp. paratuberculosis-spiked milk was analyzed. The entire process can be completed within a single working day and is suitable for routine monitoring of milk samples for M. avium subsp. paratuberculosis contamination. The applicability of this protocol for naturally contaminated milk was also demonstrated using milk samples from symptomatic M.avium subsp. paratuberculosis-infected cows, as well as pooled samples from a dairy herd with a confirmed history of paratuberculosis.  相似文献   

4.
Dinitrogenase reductase, a component of a complex and highly regulated prokaryotic enzyme, nitrogenase, is expressed in the eukaryote Saccharomyces cerevisiae. A plasmid pH-ADH-1 was constructed that directs the expression of the Klebsiella pneumoniae nifH gene, encoding dinitrogenase reductase, from the yeast alcohol dehydrogenase I promoter. In addition to being polyadenylated, yeast nifH-specific RNA is shown to be under the regulation of the alcohol dehydrogenase I promoter and is the size predicted by the nifH nucleotide sequence. Yeast transformed with the pH-ADH-1 plasmid synthesizes a polypeptide that reacts with antisera raised against dinitrogenase reductase and which, on two-dimensional polyacrylamide gels, co-migrates with dinitrogenase reductase isolated from K. pneumoniae.  相似文献   

5.
Interpretation of the 1H-NMR spectra of Escherichia coli dihydrofolate reductase is complicated by the large number of overlapping resonances due to protonated aromatic amino acids. Deuteration of the aromatic protons of aromatic amino acid residues is one technique useful for simplifying the 1H-NMR spectra. Previous attempts to label the dihydrofolate reductase from over-producing strains of Escherichia coli were not completely successful. This labeling problem was solved by transducing via P1 phage a genetic block into the de novo biosynthetic pathway of aromatic amino acids in a trimethoprim resistant strain of E. coli, MB 3746. A new strain, MB 4065, is a very high level producer of dihydrofolate reductase and requires exogenous aromatic amino acids for growth, therefore allowing efficient labeling of its dihydrofolate reductase with exogenous deuterated aromatic amino acid.  相似文献   

6.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

7.
Haloalkane dehalogenases are microbial enzymes that catalyze cleavage of the carbon-halogen bond by a hydrolytic mechanism. Until recently, these enzymes have been isolated only from bacteria living in contaminated environments. In this report we describe cloning of the dehalogenase gene dhmA from Mycobacterium avium subsp. avium N85 isolated from swine mesenteric lymph nodes. The dhmA gene has a G+C content of 68.21% and codes for a polypeptide that is 301 amino acids long and has a calculated molecular mass of 34.7 kDa. The molecular masses of DhmA determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel permeation chromatography are 34.0 and 35.4 kDa, respectively. Many residues essential for the dehalogenation reaction are conserved in DhmA; the putative catalytic triad consists of Asp123, His279, and Asp250, and the putative oxyanion hole consists of Glu55 and Trp124. Trp124 should be involved in substrate binding and product (halide) stabilization, while the second halide-stabilizing residue cannot be identified from a comparison of the DhmA sequence with the sequences of three dehalogenases with known tertiary structures. The haloalkane dehalogenase DhmA shows broad substrate specificity and good activity with the priority pollutant 1,2-dichloroethane. DhmA is significantly less stable than other currently known haloalkane dehalogenases. This study confirms that a hydrolytic dehalogenase is present in the facultative pathogen M. avium. The presence of dehalogenase-like genes in the genomes of other mycobacteria, including the obligate pathogens Mycobacterium tuberculosis and Mycobacterium bovis, as well as in other bacterial species, including Mesorhizobium loti, Xylella fastidiosa, Photobacterium profundum, and Caulobacter crescentus, led us to speculate that haloalkane dehalogenases have some other function besides catalysis of hydrolytic dehalogenation of halogenated substances.  相似文献   

8.
9.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

10.
11.
We have cloned theerg-3 gene, which encodes the ergosterol biosynthetic enzyme sterol C-14 reductase, from the tomato pathogenic fungusSeptoria lycopersici. Its nucleotide sequence, reported here, encodes a 512-amino-acid polypeptide with 54% sequence identity to sterol C-14 reductase ofNeurospora crassa. TheSeptoria gene complemented the pisatin-sensitive, tomatine-resistant and female-sterile phenotypes of aNeurospora erg-3 mutant.  相似文献   

12.
The complete amino acid sequence of dihydrofolate reductase from an amethopterin-resistant strain of Lactobacillus casei has been determined by sequence analysis of peptides produced by cleavage with cyanogen bromide, trypsin, staphylococcal protease, and myxobacter protease. Comparison of this sequence with those of reductases from other bacterial sources shows that the enzymes are homologous. The Lactobacillus casei reductase sequences shows a 29% sequence identity with that of the Escherichia coli enzyme and a 34% identity with the sequence of the enzyme from Streptococcus faecium. The NH2-terminal 68 residues of the L. casei reductase show a 54% sequence identity with that of the enzyme from S. faecium.  相似文献   

13.
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms.  相似文献   

14.
Mycobacterium avium complex (MAC) infection causes disseminated disease in immunocompromised hosts, such as human immunodeficiency virus (HIV)-positive patients, and pulmonary disease in persons without systemic immunosuppression, which has been increasing in many countries. In Japan, the incidence of pulmonary MAC disease caused by M. avium is about 7 times higher than that caused by M. intracellulare. To explore the bacterial factors that affect the pathological state of MAC disease caused by M. avium, we determined the complete genome sequence of the previously unreported M. avium subsp. hominissuis strain TH135 isolated from a HIV-negative patient with pulmonary MAC disease and compared it with the known genomic sequence of M. avium strain 104 derived from an acquired immunodeficiency syndrome patient with MAC disease. The genome of strain TH135 consists of a 4,951,217-bp circular chromosome with 4,636 coding sequences. Comparative analysis revealed that 4,012 genes are shared between the two strains, and strains TH135 and 104 have 624 and 1,108 unique genes, respectively. Many strain-specific regions including virulence-associated genes were found in genomes of both strains, and except for some regions, the G+C content in the specific regions was low compared with the mean G+C content of the corresponding chromosome. Screening of clinical isolates for genes located in the strain-specific regions revealed that the detection rates of strain TH135-specific genes were relatively high in specimens isolated from pulmonary MAC disease patients, while, those of strain 104-specific genes were relatively high in those from HIV-positive patients. Collectively, M. avium strains that cause pulmonary and disseminated disease possess genetically distinct features, and it suggests that the acquisition of specific genes during strain evolution has played an important role in the pathological manifestations of MAC disease.  相似文献   

15.
Dihydrofolate reductase from chicken liver has a single sulfhydryl group which reacts stoichiometrically and specifically with a wide variety of organic mercury compounds to yield an enzyme derivative which exhibits up to 10-fold the activity of the unmodified form when measured at pH 6.5, the optimum for the modified enzyme. The sulfhydryl group is apparently not at the active site since a 25-fold excess of either major cosubstrate, dihydrofolate or TPNH, affects neither the rate nor extent of the modification reaction. The reaction is essentially instantaneous and yields an enzyme with altered kinetic properties for all the substrate pairs examined (TPNH/dihydrofolate, TPNH/ folate, and DPNH/dihydrofolate) when tested near their pH optima. V values increased 3- to 10-fold when TPNH was cofactor; Km values increased 10- to 15-fold for the TPNH/dihydrofolate pair. The mercurial-activated enzyme, unlike the native form, exhibits a markedly increased sensitivity to heat, proteolysis, and the ionic environment, losing approximately 50% of its activity under conditions where there is no loss of activity in the native form. However, substrates can afford protection, the order of effectiveness being identical with the relative affinities of the substrates for the native enzyme (Subramanian, S., and Kaufman, B. T. (1978) Proc. Nat. Acad. Sci. USA75, 3201). Thus, dihydrofolate, with the largest binding constant is the most efficient, protecting completely against trypsin digestion when present at a 1:1 ratio with enzyme. Heating the mercury enzyme in the absence of substrates gives rise to a stable but altered conformation characterized by a time course which shows marked hysteresis. The striking similarity of the properties of the mercurial-activated dihydrofolate reductase to the reductase activated by 4 m urea, a reagent known to affect the tertiary structure of proteins, suggests that covalent binding of organic mercurials to the sulfhydryl group results in a similar conformational change characterized by a marked facilitation of the dihydrofolate reductase reaction.  相似文献   

16.
Accurate sequence analysis of mononucleotide repeat regions is difficult, complicating the use of short sequence repeats (SSRs) as a tool for bacterial strain discrimination. Although multiple SSR loci in the genome of Mycobacterium avium subsp. paratuberculosis allow genotyping of M. avium subsp. paratuberculosis isolates with high discriminatory power, further characterization of the most discriminatory loci is limited due to inherent difficulties in sequencing mononucleotide repeats. Here, a method was evaluated using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as an alternative to Sanger sequencing to further differentiate the dominant mycobacterial interspersed repetitive-unit (MIRU)–variable-number tandem-repeat (VNTR) M. avium subsp. paratuberculosis type (n = 37) in Canadian dairy herds by targeting a highly discriminatory mononucleotide SSR locus. First, PCR-amplified DNA was digested with two restriction enzymes to yield a sufficiently small fragment containing the SSR locus. Second, MALDI-TOF MS was performed to identify the mass, and thus repeat length, of the target. Sufficiently intense, discriminating spectra were obtained to determine repeat lengths up to 15, an improvement over the limit of 11 using traditional sequencing techniques. Comparison to synthetic oligonucleotides and Sanger sequencing results confirmed a valid and reproducible assay that increased discrimination of the dominant M. avium subsp. paratuberculosis MIRU-VNTR type. Thus, MALDI-TOF MS was a reliable, fast, and automatable technique to accurately resolve M. avium subsp. paratuberculosis genotypes based on SSRs.  相似文献   

17.
Investigation of integron carriage in a global collection of multi-drug resistant Salmonella enterica identified 3 unique class 1 integron gene cassette arrays not previously reported in this species. The present study used PCR and DNA sequence analysis to characterize the structure of these gene cassette arrays. A ~4.0 kb integron containing the gene cassette array arr2/cmlA5/bla OXA10 /aadA1 was found in isolates belonging to serovars Isangi and Typhimurium from South Africa. A ~6.0 kb integron containing the gene cassettes aac(6′)IIc/ereA2/IS1247/aac/arr/ereA2 was found in isolates belonging to serovar Heidelberg from the Philippines. In this gene cassette array, the insertion sequence, IS1247, and two putative resistance genes, disrupt the erythromycin resistance gene cassette. Finally, a ~6.0 kb integron containing the gene cassette qacH/dfrA32/ereA1/aadA2/cmlA/aadA1 was found in serovar Stanley isolates from Taiwan. This integron, which has not been previously reported in any bacterial species, contains a new dihydrofolate reductase gene cassette sequence designated dfrA32, with only 90% sequence similarity to previously reported dfrA cassettes. The S. enterica integrons described in the present study represent novel collections of resistance genes which confer multi-drug resistance and have the potential to be widely disseminated among S. enterica as well as other bacterial species.  相似文献   

18.
The dihydrofolate reductase structural gene, folA, has been cloned into the multicopy vector pBR322 following the gene's enrichment by bacteriophage Mu-mediated transposition. Strains carrying the resultant plasmid, pJFMS, produce 25 to 30 times more dihydrofolate reductase than control strains. Consequently they are resistant to trimethoprim, an inhibitor of this enzyme. This elevation in enzyme production is due to an increase in the number of folA gene copies per cell. The higher yield of dihydrofolate reductase obtained will be extremely useful for purifying and characterising this trimethoprim-sensitive chromosomally derived enzyme. The plasmid will also be invaluable for studying the structure, function and regulation of dihydrofolate reductase.  相似文献   

19.
We have determined the nucleotide sequence of a 1075-base-pair HindIII fragment of the T4 phage genome. This fragment contains the structural gene (frd) for dihydrofolate reductase and part of the gene (td) encoding thymidylate synthase. The fragment contains a 579-base-pair open reading frame, encoding a 193-residue polypeptide with a calculated mass of 21,603 Da, in agreement with our reported subunit molecular mass of 23,000. The deduced amino acid sequence shows partial homology with other dihydrofolate reductases, with most of the identities lying in regions known to be involved in substrate binding and catalysis. The 3' end of the coding strand overlaps the coding region for thymidylate synthase; the sequence - ATGA -includes an opal terminator for the frd gene and an initiating triplet for the td gene. The deduced amino acid sequence from this initiating ATG is identical, for the first 20 residues, with the NH2-terminal 20 residues reported for the td protein (M. Belfort , A. Moelleken , G. F. Maley , and F. Maley (1983) J. Biol. Chem. 258, 2045-2051). The sequenced HindIII fragment was transferred into a high expression plasmid vector for large scale production of homogeneous T4 dihydrofolate reductase. The experimentally determined sequence of 20 residues at the NH2-terminus of this protein is identical with that deduced from the nucleotide sequence for T4 dihydrofolate reductase.  相似文献   

20.
The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号