首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative studies of incremental markings retained within human enamel have reconstructed the duration and rate (crown and cusp formation times, initiation and completion, daily enamel secretion rates) of permanent tooth development. This approach has provided one way of estimating human age‐at‐death, and facilitated comparative dental studies of primate evolution. Similar applications from deciduous enamel are inhibited because developmental reconstructions from incremental markings for these teeth are less frequently reported in the literature. This study quantified the duration and rate of enamel development for mesial (protoconid, metaconid) and distal cusps (hypoconid, entoconid) for first (dm1) and second (dm2) deciduous mandibular molars from an archaeological sample of modern human juveniles. Crown formation time can be calculated from the dm1 protoconid because growth initiates and completes in this cusp, and from the dm2 protoconid combined with the final period of hypoconid growth. The dm1 postnatal crown formation time included the time taken for the tubercle of Zuckerkandl to develop, and differed slightly compared to radiographic methods. The majority of dm1 protoconid cuspal (occlusal region) enamel formed before birth. The dm2 entoconid enamel formed mainly after birth. Birth reduced daily enamel secretion rates, changed the visibility of incremental markings, and disrupted enamel growth for 3 to 8 days. Findings presented here can contribute to age‐at‐death estimates for human infants aged 13‐postnatal months or less, and should facilitate comparisons of primate deciduous incremental enamel development in an evolutionary context. Regression equations are included so that cuspal formation time can be estimated from enamel thickness. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X‐ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X‐ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
As a dental indicator of generalized physiological stress, enamel hypoplasia has been the subject of several Neandertal studies. While previous studies generally have found high frequencies of enamel hypoplasia in Neandertals, the significance of this finding varies with frequencies of enamel hypoplasia in comparative samples. The present investigation was undertaken to ascertain if the enamel hypoplasia evidence in Neandertals suggests a high level of physiological stress relative to a modern human foraging group, represented here by an archaeological sample of Inuit from Point Hope, Alaska. Unlike previous studies, this study focused specifically on linear enamel hypoplasia (LEH), emphasizing systemic over localized causes of this defect by considering LEH to be present in an individual only if LEH defects occur on two anterior teeth with overlapping crown formation periods. Moreover, this study is the first to evaluate the average growth disruption duration represented by these defects in Neandertals and a comparative foraging group. In the prevalence analysis, 7/18 Neandertal individuals (from Krapina and southern France) and 21/56 Neandertal anterior teeth were affected by LEH, or 38.9% and 37.5% respectively. These values do not differ significantly from those of the Inuit sample in which 8/21, or 38.1% of individuals, and 32/111, or 28.8% of anterior teeth were affected. For the growth disruption duration analysis, 22 defects representing separate episodes of growth disruption in Neandertals were compared with 22 defects in the Inuit group using three indicators of duration: the number of perikymata (growth increments) in the occlusal walls of LEH defects, the total number of perikymata within them, and defect width. Only one indicator, the total number of perikymata within defects, differed significantly between the Inuit and Neandertal groups (an average of 13.4 vs. 7.3 perikymata), suggesting that if there is any difference between them, the Inuit defects may actually represent longer growth disruptions than the Neandertal defects. Thus, while stress indicators other than linear enamel hypoplasia may eventually show that Neandertal populations were more stressed than those of modern foragers, the evidence from linear enamel hypoplasia does not lend support to this idea.  相似文献   

4.
The defects of enamel hypoplasia can be related to the layered structure of enamel which represents the sequence of development in tooth crowns. From such studies, it is possible to see that furrow-type enamel defects (the most common form of hypoplasia seen with the naked eye) are just the most prominent expression of a continuum which extends ever smaller, down to a microscopic disturbance to a single layer in the crown formation sequence. Furthermore, the progressive decrease in spacing between development layers which occurs down the crown sides, from occlusal to cervical, affects both the prominence and apparent width of the defects. This makes it difficult to use measurements as a means of estimating the duration of the disturbance causing a particular defect. The difficulty is even greater for the less common pitted or exposed-plane-type defects, for which the apparent width bears very little relationship with the duration of the growth disturbance. The defects of enamel hypoplasia can therefore be understood clearly only when examined under the microscope in relation to the structures which mark the development sequence of the tooth crown. Am J Phys Anthropol 104:89–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Linear enamel hypoplasia was scored on Neolithic, Copper Age, and Early Bronze Age samples from the Trentino region, Italy, in order to compare the extent of growth disruption in different biocultural subsistence systems (foragers with little agriculture, to agriculturists and agropastoralists). The Early Bronze Age sample shows a higher frequency of enamel defects and an earlier chronological onset than the early Neolithic sample. The higher frequency of defects in the Bronze Age sample could be linked to less diversified nutrition and, because of increased sedentism, a higher risk of disease.  相似文献   

6.
Incisor abnormalities such as loss of enamel color, hypoplasia of enamel, shortening and lengthening, irregular shape of edge, and fracture were often observed in SAM-P/2/Iw (senescence accelerated mouse-prone) more than 12 months old. On the other hand, for SAM-R/1/lw (control) mice more than 20 months old, there were only a few instances of loss of enamel color. The incidence of incisor abnormality was significantly different between P/2/Iw and R/I/Iw. The onset of abnormality was also earlier in P/2/Iw. Histologically, dens in dente and odontoma-like structures were occasionally found in the incisors of P/2/Iw. These findings add further supporting evidence that SAM-P/2/Iw is truly senescence accelerated.  相似文献   

7.
Strontium and calcium are incorporated into developing teeth in a manner that reflects changing physiological concentrations in the body. A new model predicts changes in strontium/calcium (Sr/Ca) ratios in response to dietary transitions experienced at birth and during the weaning period. Microsampling of longitudinal thin sections of tooth enamel using laser ablation inductively coupled plasma mass spectrometry provides a basis for the systematic evaluation of variation in Sr/Ca ratios within the tooth crown. Incremental growth markers in enamel are used to determine the age of onset of enamel mineralization at each sampling point. Thin sections of 5 teeth from 2 wild-caught baboons (Papio hamadryas anubis) were systematically analysed using this technique. Intra- and intertooth analyses of Sr/Ca ratios reveal a pattern of dietary development during the period of enamel formation that is consistent with observational data on the timing of weaning behaviour in anubis baboons.  相似文献   

8.
9.
The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot.  相似文献   

10.
This study uses macroscopic and microscopic methods to analyze the expression of linear enamel hypoplasia (LEH) in Plio-Pleistocene South African hominins. LEH is a developmental defect of enamel that is used in many anthropological contexts as a physiological stress indicator. Previous research has not settled the question as to whether differences in LEH expression exist between Paranthropus and Australopithecus and if they exist, to what extent these differences might be explained simply by taxonomic differences in enamel development and morphology rather than by differential stress experience. In this study, the analysis of LEH is conducted with respect to differences between Paranthropus and Australopithecus in aspects of enamel development and morphology that are thought to influence LEH expression. Two factors impacting LEH expression are considered: the duration of enamel formation, and the spacing of perikymata. It is predicted that if the first factor strongly influences the expression of LEH, then there should be fewer defects per tooth in Paranthropus because of its abbreviated crown formation spans (and fast extension rates) relative to Australopithecus. It is also predicted that because Australopithecus has more densely packed perikymata in comparable regions of the crown than Paranthropus, this taxon should, on average, have narrower defects than Paranthropus. To address these questions, 200 Australopithecus and 137 Paranthropus teeth were examined for LEH, and the analysis of defect width with respect to perikymata spacing was conducted on tooth impressions examined under a scanning electron microscope using INCA (Oxford Instruments) measurement software. Data support the first prediction: Australopithecus does have significantly more defects per canine tooth than Paranthropus. Data do not support the second prediction in large part because several Australopithecus specimens have wide groove defects in which perikymata are not visible and enamel is irregular. Such wide grooves are not predicted by perikymata spacing such that alternative explanations, including taxonomic differences in ameloblast sensitivity and the duration/severity of disruptions to enamel growth, must be considered.  相似文献   

11.
Linear enamel hypoplasia (LEH), a type of enamel defect reflecting nonspecific physiological stress, has traditionally been used by bioarchaeologists to assess human health. Initially, measurements of defect width were used to estimate the duration of stress episodes. More recently, methods of counting within-defect perikymata (enamel growth increments) were developed to more accurately assess duration. Because perikymata are often not continuously visible within defects, while widths can usually be measured, the primary purpose of this article was to determine if, under restrictive conditions, the widths of LEH defects might be used as relative indicators of stress episode duration. Using a set of dental replicas from the prehistoric Irene Mound (1150-1400 A.D.), this study also investigated potential sources of variation in defect widths and how often defect widths could be measured and within-defect perikymata counted. Of 120 defects, only 47 contained both measurable defect widths and total within-defect perikymata, while 79 had measurable defect widths. Regression analysis revealed that, for these 47 defects, defect widths were more strongly related to the total number of within-defect perikymata than they were to crown region or tooth type. Although wide prediction intervals indicated that a defect's width could not be used to predict the number of within-defect perikymata for an individual, narrower confidence intervals associated with hypothetical mean population widths suggested that mean defect widths might be used to rank populations in terms of relative average stress episode duration.  相似文献   

12.
13.
The process of vascularization of the enamel organ, a unique epithelial structure, occurs when the tooth germ is fully developed, i.e., at the onset of dentinogenesis. Although the three-dimensional organization of the capillaries has been previously investigated, the structural features underlying the formation of the new capillaries remains poorly understood. Thus, in the hope of better understanding the mechanism of formation of the stellate reticulum capillaries, upper first molar tooth germs of newborn and 3-day-old rats were fixed in glutaraldehyde-formaldehyde and processed for light and electron microscopy. Our results showed that blood capillaries are initially in close proximity to the outer enamel epithelium. Between and intercalated with the capillaries are round/ovoid clusters of cells, some of which are vacuolated, closely apposed to the outer enamel epithelium. The outer enamel epithelium is not a continuous layer, but exhibits gaps between the cells. This suggests that the capillaries penetrate the enamel organ through these gaps, since no invagination of the epithelium was observed. The presence of a cluster of cells containing vacuoles suggests that vasculogenesis is taking place. Images showing loss of the basal lamina, proliferation of endothelial cells, presence of filopodia and lateral sprouting suggests that angiogenesis is also occurring. Thus, neoformation of capillaries of the molar enamel organ of rat seems to occur simultaneously by mechanisms of vasculogenesis and angiogenesis.  相似文献   

14.
Enamel hypoplasias are useful indicators of systemic growth disturbances during childhood, and are routinely used to investigate patterns of morbidity and mortality in past populations. This study examined the pattern of linear enamel hypoplasias in two different burial populations from 18th and 19th Century church crypts in London. Linear enamel hypoplasias on the permanent dentitions of individuals from the crypt of Christ Church, Spitalfields, were compared to enamel defects on the teeth of individuals from St. Bride's. The method used involves the identification of enamel defects at a microscopic level, and systemic perturbations are detected by matching hypoplasias among different tooth classes within each individual. The pattern of linear enamel hypoplasias was contrasted between individuals from the burial sites of Spitalfields and St. Bride's, between males and females, and between those aged less than 20 years of age and those aged over 20 years at death. Six different parameters were examined: frequency of linear enamel hypoplasias, interval between defects, duration of hypoplasias, age at first occurrence of hypoplasia, age at last occurrence of hypoplasia, and the percentage of enamel formation time taken up by growth disturbances. All individuals in the study displayed linear enamel hypoplasias, with up to 33% of total visible enamel formation time affected by growth disruptions. Multiple regression analysis indicated a number of significant differences in the pattern of enamel hypoplasias. Individuals from Spitalfields had shorter intervals between defects and greater percentages of enamel formation time affected by growth disturbances than did individuals from St. Bride's. Females had greater numbers of linear enamel hypoplasias, shorter intervals between defects, and greater percentages of enamel formation time affected by growth disturbances than males. There were also differences in the pattern of enamel hypoplasias and age at death in this study. Individuals who died younger in life had an earlier age at first occurrence of enamel hypoplasia than those who survived to an older age. The pattern of enamel hypoplasias detected in this study was influenced by tooth crown geometry and tooth wear such that most defects were found in the midcrown and cervical regions of the teeth, and greater numbers of defects were identified on the anterior teeth. Differences in sensitivity of the parameters used for the detection of enamel hypoplasias were found in this study. The percentage of visible enamel formation time affected by growth disturbances was the parameter that identified the greatest number of significant differences among the subgroups examined.  相似文献   

15.
This study of linear enamel hypoplasia (LEH) in Plio-Pleistocene hominins builds on a previous study (Guatelli-Steinberg [2003] Am. J. Phys. Anthropol. 120:309-322) that focused on LEH in early South African hominins. The present study is more comprehensive, encompassing dental specimens of hominins from East Africa as well, including early Homo. As a developmental defect of enamel, LEH is used in anthropological contexts to reveal information about physiological stress. However, intrinsic aspects of enamel development and morphology can affect the expression of LEH, complicating efforts to understand the significance of these defects. In this study, the analysis of LEH is conducted with respect to enamel development and morphology. It is predicted that Paranthropus should have fewer defects on its canine teeth than Australopithecus and Homo, owing to its abbreviated period of enamel formation. This prediction is supported: Paranthropus has statistically significantly fewer defects per canine than Australopithecus and Homo. The previous study demonstrated that despite the wider spacing of perikymata on the teeth of South African Paranthropus, defects on the canine teeth of this genus were not wider than those of Australopithecus. A multiple linear regression analysis in that study, as well as a separate analysis in the present study, indicate that the number of perikymata within defects is a better predictor of defect width than perikymata spacing. In this study, it was additionally found that the average number of perikymata within Australopithecus defects is statistically significantly greater than it is in Paranthropus, thus explaining why Paranthropus defects are not wider than those of Australopithecus. The biological significance of this difference in the number of perikymata within the defects of Australopithecus and Paranthropus is considered in light of several factors, including: 1) the possibility that other intrinsic attributes of enamel morphology may be involved (specifically the faster extension rates of Paranthropus that result in shallower defects), 2) generic differences in the canalization of enamel development, and 3) generic differences in the duration of disruptions to enamel growth.  相似文献   

16.
Potassium pyroantimonate-osmium tetroxide cytochemistry has been used to study the distribution of ionic calcium in hamster tooth germs during cell differentiation and during early dentinogenesis and amelogenesis. Before the onset of mineralization, pyroantimonate (PA) reaction product was found in the nucleus of differentiating preameloblasts and preodontoblasts. In the predentin, it was preferentially located along striated collagen fibrils, lying perpendicular to the basal lamina. At the onset of mineralization, a pronounced increase of PA reaction product was evident in the predentin and on the plasma membrane and in mitochondria of both preodontoblasts and preameloblasts opposite the mineralizing mantle dentin. During early enamel mineralization, PA reaction product was present in the "growing" crystal ends, while in the secretory ameloblasts, most of the PA reaction product was localized on the cytoplasmic side of the apical plasma membranes and in mitochondria. When Tomes' processes developed, PA reaction product, both cytoplasmic and membrane bound, was low or absent deep in the processes, but gradually increased toward the apical terminal web. A corresponding gradient of PA reaction product was observed on the opposing enamel crystallites. From this study we conclude that both preodontoblasts and preameloblasts seem to be involved in calcium acquisition necessary for the early stages of mantle dentin mineralization. Tomes' processes seem to regulate the entry of calcium into the enamel mineralization front.  相似文献   

17.
Periodicity of repetitive linear enamel hypoplasia (rLEH) in apes from high latitudes with single wet and dry seasons annually has not been described. We reconstruct periodicity and duration of rLEH in canine teeth from three recently deceased chimpanzees from Fongoli, Senegal with a marked seven‐month dry season. High‐resolution dental molds were taken in the field for magnified imaging with digital microscopy. Photomontages allowed counting of perikymata between episodes of rLEH for reconstruction of periodicity and duration of physiological stress. Where rLEH spans the imbricational enamel, the number of events is consistent with years required to form canine imbricational enamel; i.e., periodicity of rLEH seems circannual. We predicted perikymata counts between rLEH events ranging from 52 to 61 based on reported “long counts” of 7–6 days. Counts ranged from 29.5 to 44, individual mean of 36.7. This discrepancy could be explained by recurrent stress with a periodicity of 7.2–8.4 months, or by long counts of 10 days per stria. Neither is supported in the literature. Since we find evidence of rLEH with circannual periodicity, we postulate the existence of non‐emergent imbricational striae. Based on evidence that stress at Fongoli recurs annually, we reconstruct stress duration of 2–3 months, longer than reported for chimpanzees living in other habitats, which we attribute to heat stress and food shortage near shrinking waterholes. We conclude that canine teeth from a small mortality cohort of chimpanzees at Fongoli preserve a faithful record of dry season stress in an extreme environment. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Physiological stress, such as malnutrition or illness, can disrupt normal enamel growth, resulting in linear enamel hypoplasias (LEHs). Although ecological factors may contribute to LEH expression, other factors, such as surface abrasion and enamel growth variables, are also likely to be involved. Attention to these other factors is necessary before we can begin to understand what LEH might signify in terms of ecological sources of physiological stress in non-human primates. This study focuses on assessing the contribution of these other factors to variation in LEH expression within and across great ape taxa. Here, we present LEH data from unabraded crown regions in samples of seven great ape species. We analyze these data with respect to lateral enamel formation time and the angles that striae of Retzius make with the enamel surface, as these variables are expected to affect variation in LEH expression. We find that although the duration of enamel formation is associated with sex differences in LEH expression, it is not clearly related to taxonomic variation in LEH expression, and does not explain the low frequency of LEH in mountain gorillas found in this and a previous study. Our data on striae of Retzius angles suggest that these influence LEH expression along the tooth crown and may contribute to the consistently high frequencies of LEH seen in Pongo in this and previous studies. We suggest that future work aimed at understanding species variation in these angles is crucial to evaluating taxonomic patterns of LEH expression in great apes.  相似文献   

19.
We report a case of postnatal onset short stature and a distinctive pitted enamel hypoplasia in a 19-year-old woman. Growth hormone deficiency and other endocrine deficiencies were excluded. Additional observations of similar cases might outline a newly recognized syndrome.  相似文献   

20.
This paper presents an assessment of enamel defects (hypoplasias) in the permanent anterior teeth of three Tupí-Mondé-speaking groups from the Brazilian Amazonia: the Gavião, Suruí, and Zoró. These are native societies that experienced the onset of permanent contact with Brazilian national society in different periods of the 20th century. Tupí-Mondé dentition is highly hypoplastic, which is possibly related to exposure to adverse health and nutritional conditions. Data for the Gavião, Suruí, and Zoró are in agreement with results from other populations that show that certain teeth, the maxillary central incisors and the mandibular canines in particular, tend to be more hypoplastic. Although all types of teeth show hypoplasia concentrations at some enamel zones, there is substantial intertooth variation in the age at which peaks occur. It is argued that hypoplasia concentrations at certain ages are unlikely to be related to postweaning stresses for the Tupí-Mondé. Statistically significant associations between presence of enamel defects and deficits in physical growth (height-for-age) were detected in children 7–11 years of age. Diachronic assessment of enamel defects, which rested upon the potential of enamel as “memory” of past periods of systemic physiological perturbation, allowed us to unravel aspects related to the dynamics of Tupí-Mondé life during the 20th century. Frequencies of enamel zones with defects peaked during the contact years of each of the Tupí-Mondé groups, attesting to the extreme social and biological hardships that characterized the contact experiences of these native societies with Brazilian national society. Am J Phys Anthropol 109:111–127, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号