首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild-type Zymomonas mobilis can utilize only three substrates (sucrose, glucose, and fructose) as sole carbon sources, which are largely converted into ethanol and carbon dioxide. Here, we show that although D-mannose is not used as a growth substrate, it is taken up via the glucose uniport system (glucose facilitator protein) with a Vmax similar to that of glucose. Moreover, D-mannose was phosphorylated by a side activity of the resident fructokinase to mannose-6-phosphate. Fructokinase was purified to homogeneity from an frk-recombinant Z. mobilis strain showing a specific activity of 205 +/- 25 U of protein mg-1 with fructose (K(m), 0.75 +/- 0.06 mM) and 17 +/- 2 U mg-1 (relative activity, 8.5%) with mannose (K(m), 0.65 +/- 0.08 mM). However, no phosphomannoseisomerase activity could be detected for Z. mobilis, and this appeared to be the reason for the lack of growth on mannose. Therefore, we introduced the Escherichia coli gene pmi (manA) in Z. mobilis under the control of a lacIq-Ptac system on a broad-host-range plasmid (pZY507; Cmr). Subsequently, in pmi-recombinant cells of Z. mobilis, phosphomannoseisomerase was expressed in a range of from 3 U (without isopropyl-beta-D-thiogalactopyranoside [IPTG]) to 20 U mg-1 of protein in crude extracts (after IPTG induction). Recombinant cells of different Z. mobilis strains utilized mannose (4%) as the sole carbon source with a growth rate of 0.07 h-1, provided that they contained fructokinase activity. When the frk gene was additionally expressed from the same vector, fructokinase activities of as much as 9.7 U mg-1 and growth rates of as much as 0.25 h-1 were detected, compared with 0.34 h-1 on fructose for wild-type Z. mobilis. Selection for growth on mannose was used to monitor plasmid transfer of pZY507pmi from E. coli to Z. mobilis strains and could replace the previous selection for antibiotic resistance.  相似文献   

2.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

3.
Exponentially growing cells of Zymomonas mobilis normally exhibit a lag period of up to 3 h when transferred from 0.11 M (2%) to 0.55 M (10%) glucose liquid medium. A mutant of Z. mobilis (CU1Rif2), fortuitously isolated, showed more than a 20-h lag period when grown under the same conditions, whereas on 0.55 M glucose solid medium, it failed to grow. The growth of CU1Rif2 on elevated concentrations of other fermentable (0.55 M sucrose or fructose) or nonfermentable (0.11 M glucose plus 0.44 M maltose or xylose) sugars appeared to be normal. Surprisingly, CU1Rif2 cells grew without any delay on 0.55 M glucose on which wild-type cells had been incubated for 3 h and removed at the beginning of their exponential phase. This apparent preconditioning was not observed with medium obtained from wild-type cells grown on 0.11 M glucose and supplemented to 0.55 M after removal of the wild-type cells. Undelayed growth of CU1Rif2 on 0.55 M glucose previously conditioned by the wild type was impaired by heating or protease treatment. It is suggested that in Z. mobilis, a diffusible proteinaceous heat-labile factor, transitionally not present in 0.55 M glucose CU1Rif2 cultures, triggers growth on 0.55 M glucose. Biochemical analysis of glucose uptake and glycolytic enzymes implied that glucose assimilation was not directly involved in the phenomenon. By use of a wild-type Z. mobilis genomic library, a 4.5-kb DNA fragment which complemented in low copy number the glucose-defective phenotype as well as glucokinase and glucose uptake of CU1Rif2 was isolated. This fragment carries a gene cluster consisting of four putative coding regions, encoding 167, 167, 145, and 220 amino acids with typical Z. mobilis codon usage, -35 and -10 promoter elements, and individual Shine-Dalgarno consensus sites. However, strong homologies were not detected in a BLAST2 (EMBL-Heidelberg) computer search with known protein sequences.  相似文献   

4.
Summary A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.  相似文献   

5.
H Loos  R Krmer  H Sahm    G A Sprenger 《Journal of bacteriology》1994,176(24):7688-7693
The gram-negative ethanologenic bacterium Zymomonas mobilis is able to grow in media containing high concentrations of glucose or other sugars. A novel compatible solute for bacteria, sorbitol, which enhances growth of Z. mobilis at glucose concentrations exceeding 0.83 M (15%), is described. Added sorbitol was accumulated intracellularly up to 1 M to counteract high external glucose concentrations (up to 1.66 M or 30%). Accumulation of sorbitol was triggered by a glucose upshift (e.g., from 0.33 to 1.27 M or 6 to 23%) and was prevented by the uncoupler CCCP (carbonyl cyanide m-chlorophenylhydrazone; 100 microM). The sorbitol transport system followed Michaelis-Menten kinetics, with an apparent Km of 34 mM and a Vmax of 11.2 nmol.min-1.mg-1 (dry mass). Sorbitol was produced by the cells themselves and was accumulated when growing on sucrose (1 M or 36%) by the action of the periplasmic enzyme glucose-fructose oxidoreductase, which converts glucose and fructose to gluconolactone and sorbitol. Thus, Z. mobilis can form and accumulate the compatible solute sorbitol from a natural carbon source, sucrose, in order to overcome osmotic stress in high-sugar media. No other major compatible solute (betaine, proline, glutamate, or trehalose) was detected.  相似文献   

6.
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis.  相似文献   

7.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

8.
Summary High resolution 13C Nuclear Magnetic Resonance (NMR) spectroscopy has been employed to determine the chemical composition of the unknown major products in a sucrose or fructose plus glucose fermentation to ethanol by the bacterium Zymmonas mobilis. When grown on these sugars Z.mobilis was found to produce significant amounts of sorbitol, up to 43 g·l-1 for strain ZM31 when grown on 250 g·l-1 sucrose.The production of sorbitol and decrease of glucose, fructose, or sucrose was followed throughout batch fermentations by NMR and HPLC. Sorbitol was shown to be derived only from fructose by [14C]-feeding experiments. Additionally 31P NMR spectroscopy was utilized to determine the concentrations of both glucose 6-phosphate and fructose 6-phosphate relative to their respective concentrations in Z.mobilis cells fermenting glucose or fructose alone.It is suggested that free glucose inside the cell inhibits fructokinase. Free intracellular fructose may then be reduced to sorbitol via a dehydrogenase type enzyme. Attempts to grow Z.mobilis on sorbitol were unsuccessful, as were experiments to induce growth via mutagenesis.This work was supported in part by the National Energy Research, Development and Demonstration Council of Australia  相似文献   

9.
10.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

11.
In the biotechnological production of L-lysine and L-glutamate by Corynebacterium glutamicum media based on glucose, fructose or sucrose are typically used. Glutamate production by C. glutamicum was very similar on glucose, fructose, glucose plus fructose and sucrose. In contrast, lysine production of genetically defined C. glutamicum strains was significantly higher on glucose than on the other carbon sources. To test whether malic enzyme or fructose-1,6-bisphosphatase might limit growth and lysine on fructose, glucose plus fructose or sucrose, strains overexpressing either malE which encodes the NADPH-dependent malic enzyme or the fructose-1,6-bisphosphatase gene fbp were generated. Overexpression of malE did not improve lysine production on any of the tested carbon sources. Upon overexpression of fbp lysine yields on glucose and/or fructose were unchanged, but the lysine yield on sucrose increased twofold. Thus, fructose-1,6-bisphosphatase was identified as a limiting factor for lysine production by C. glutamicum with sucrose as the carbon source.  相似文献   

12.
Abstract.  The influence of glucose, fructose and sucrose on oviposition site selection by Lobesia botrana is studied by combining behavioural and electrophysiological experiments. Oviposition choice assays, using surrogate grapes treated with grape berry surface extracts of Vitis vinifera cv. Merlot at different development stages, show that L. botrana females are most stimulated by extracts of mature berries containing the highest concentrations of glucose and fructose. Choice assays reveal that the oviposition response to these sugars is dose-dependant (with a threshold of the applied solution = 10 m m and a maximum stimulation at 1  m ) and that females are more sensitive to fructose than to glucose. Tarsal contact-chemoreceptor sensilla are unresponsive to stimulation with sugars but the ovipositor sensilla contain at least one neurone most sensitive to fructose and sucrose with a threshold of approximately 0.5 m m . Corresponding to the behavioural data, glucose is significantly less stimulatory to sensilla than fructose or sucrose. It is argued that fructose may be of special importance for herbivorous insects exploiting fruit as an oviposition site.  相似文献   

13.
Glucose and fructose metabolism in Zymomonas anaerobia   总被引:4,自引:0,他引:4       下载免费PDF全文
Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner-Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products.  相似文献   

14.
A model of ethanol fermentation by Zymomonas mobilis ATCC 10988 on the medium containing glucose and fructose is proposed. This model was developed on the basis of metabolic analysis and many experimental findings. When glucose was used as the substrate, the dependence of the carbon fraction (α) assimilating to biomass on the specific growth rate (μ) could be well correlated to α = 0.25μ + 0.012. This correlation resulted in a novel equation for specific glucose uptake rate, which could describe the Z. mobilis fermentation in both batch and continuous modes. When fructose and glucose were both presented in the liquid medium, the model could predict the uptake of glucose and fructose as well as the formation of biomass, ethanol and sorbitol by Z. mobilis. All parameters used in the model were independently evaluated on the basis of various experimental findings. Good agreement was found between the model predictions and data of Z. mobilis fermentation on media containing both glucose and fructose. The proposed model could also describe the behavior of ethanol fermentation on sucrose medium supplemented with immobilized invertase.  相似文献   

15.
In the presence of pyrophosphate and uridine diphosphate, sucrose was cleaved to form glucose 1-phosphate and fructose with soluble extracts from sucrose importing plant tissues. The glucose 1-phosphate then was converted through glycolysis to triose phosphates in a pyrophosphate-dependent pathway which was activated by fructose 2,6-bisphosphate. Much less activity, less than 5%, was found in sucrose exporting tissue extracts from the same plants. These findings suggest that imported sucrose is metabolized in the cytoplasm of plant tissues by utilizing pyrophosphate and that sucrose metabolism is partially regulated by fructose 2,6-bisphosphate.  相似文献   

16.
Summary The use of Mucor sp. M105 and Fusarium sp. F5 in the production of fructose from sugarcane sucrose and high fructose syrup (HFS) was investigated. Although Mucor sp. could not utilize sucrose as the sole carbon and energy source for cell growth, Mucor sp. preferentially utilized glucose in a glucose:fructose (1:1) mixture during fermentation to ethanol. In contrast, Fusarium sp. utilized sucrose as sole carbon source by secretion of extracellular hydrolytic enzymes that degraded the disaccharide. In Fusarium sp., glucose formation in the medium was faster than fructose. Due to the low consumption rate of fructose, this substrate remained in the fermentation broth. The application of these biological systems for the production of fructose from either sucrose or HFS is discussed.  相似文献   

17.
Plectonema boryanum can grow in the dark with ribose, sucrose, mannitol, maltose, glucose, or fructose. Cell doubling times with 10 mM substrate are the following: 5 days with ribose, 6 days with sucrose or mannitol, 10 days with maltose, 12 days with glucose, and 13 days with fructose; with ribose plus 0.1% casamino acids it is 2.5 days. Dark-grown cells appear morphologically similar to light-grown cells. Cells grown in the dark for several years remain pigmented and resume photoautotrophic growth when placed in the light. Dim light (85 lux) increases the growth rate with ribose and with ribose plus casamino acids to nearlytwice that of the dark rate. In moderate light, growth takes place with ribose even in the presence of 1x10-5 M DCMU.  相似文献   

18.
Immobilised cells of the bacterium Zymomonas mobilis were used to remove glucose, fructose, and sucrose from food-grade oligosaccharide mixtures. Unpurified fructo-, malto-, isomalto-, gentio-, and inulinoligosaccharides, containing total carbohydrate concentrations of 300 g l(-1), were added to immobilised cells, in 100 ml batch reactors. No pH control or nutrient additions were required. Contaminating glucose, fructose, and sucrose within the mixtures was completely fermented within 12 h. The fermentation end products were ethanol and carbon dioxide. A minor amount of sorbitol was also produced as a fermentation by-product in the inulin-oligosaccharide mixture. No degradation of the oligosaccharides in the mixtures was observed.  相似文献   

19.
The enzymes responsible for sorbitol formation in Zymomonas mobilis were investigated. A previously undescribed enzyme catalyzes the intermolecular oxidation-reduction of glucose and fructose to form gluconolactone and sorbitol. This enzyme has been purified; it had a subunit size of 40,000 daltons and is probably tetrameric at low pH. It contained tightly bound NADP as the hydrogen carrier and did not require any added cofactor for activity. In addition, a gluconolactonase has been isolated, although not completely purified. Together these two enzymes were capable of completely converting a 54% (wt/vol) equimolar mixture of glucose and fructose to sorbitol and sodium gluconate at the optimum pH of close to 6.2. The oxidoreductase had low affinities for its substrates, but natural environmental conditions would expose it to high concentrations of sugars. The amount of the enzyme in Z. mobilis cells was sufficient to account for the rate of sorbitol formation in vivo. However, the enzyme was present in the highest amounts when the cells were grown on glucose alone, and it was repressed by the presence of fructose; this was not the case with the gluconolactonase.  相似文献   

20.
General patterns of sucrose fermentation by two strains of Zymomonas mobilis, designated Z7 and Z10, were established using sucrose concentrations from 50 to 200 g/liter. Strain Z7 showed a higher invertase activity than Z10. Strain Z10 showed a reduced specific growth rate at high sucrose concentration while Z7 was unaffected. High sucrose hydrolyzing activity in strain Z7 lead to glucose accumulation in the medium at high sucrose concentrations. Ethanol production and fermentation time depend on the rate of catabolism of the products of sucrose hydrolysis, glucose and fructose. The metabolic quotients for sucrose utilization, qs, and ethanol production, qp (g/g·hr), are unsuitable for describing sucrose utilization by Zymomonas mobilis, as the logarithmic phase of growth precedes the phase of highest substrate utilization (g/liter·hr) and ethanol production (g/liter·hr) in batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号