首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physico-chemical, morphological, thermal, pasting, textural, and retrogradation properties of the starches isolated from four traditional Taewa (Maori potato) cultivars (Karuparera, Tutaekuri, Huakaroro, Moemoe) of New Zealand were studied and compared with starch properties of a modern potato cultivar (Nadine). The relationships between the different starch characteristics were quantified using Pearson correlation and principal component analysis. Significant differences were observed among physico-chemical properties such as phosphorus content, amylose content, swelling power, solubility and light transmittance of starches from the different potato cultivars. The starch granule morphology (size and shape) for all the potato cultivars showed considerable variation when studied by scanning electron microscopy and particle size analysis. Starch granules from Nadine and Moemoe cultivars showed the presence of large and irregular or cuboid granules in fairly high number compared with the starches from the other cultivars. The transition temperatures (To; Tp; Tc) and the enthalpies (ΔHgel) associated with gelatinization suggested differences in the stability of the crystalline structures among these potato starches. The Moemoe starch showed the lowest To, while it was higher for Tutaekuri and Karuparera starches. Pasting properties such as peak, final and breakdown viscosity and texture profile analysis (TPA) parameters of starch gels such as hardness and fracturability were found to be higher for Nadine and Huakaroro starches. The Nadine and Huakaroro starch gels also had lower tendency towards retrogradation as evidenced by their lower syneresis (%) during storage at 4 °C. Principal component analysis showed that the Tutaekuri and Nadine cultivars differed to the greatest degree in terms of the properties of their starches.  相似文献   

2.
The aim of the present work was to investigate the effect of physical structures on the properties of starch granules. Starches with a high amylopectin content possessing A- and B-type crystallinity were chosen for the study. The gelatinization temperature decreased in the following order: maize (A) > potato (B) > wheat (A) > barley (A), which did not reflect a correlation with the type of crystallinity. Low values of gelatinization temperature were accompanied with high free surface energy of the crystallites. It is proposed that these data are caused by different types of imperfections in starch crystals. Annealing resulted in an enhancement of the gelatinization temperature and a decrease of the free surface energy of the crystallites for all starches reflecting a partial improvement of crystalline perfection. A limited acid hydrolysis (lintnerization) of the starches decreased the gelatinization temperature because of a partial disruption of the crystalline lamellae and an increase of the amount of defects on the edges of the crystallites. Annealing of the lintnerized starches improved the structure of maize and potato starch, giving them similar structural and physicochemical parameters, which was opposite the behavior of the annealed sample from wheat. The possible nature of removable and nonremovable defects inside the crystalline region of the starch granules is discussed. It is concluded that, besides the allomorphic A- and B-types of crystal packing, physical defects in the crystals possess a major impact on starch gelatinization.  相似文献   

3.
The heat activation of trehalase in extracts of sporangiospores of Phycomyces blakesleeanus, following the induction of germination by heat activation and the gelatinization of potato starch granules were studied under different conditions in order to discriminate between several phenomena as possible triggers in the activation of trehalase.Short-chain alcohols (from methanol to pentanol) lower the activation temperature of trehalase while long-chain alcohols (from heptanol to nonanol) raise it. Short-chain alcohols also lower the gelatinization temperature of potato starch granules, while long-chain alcohols, hexanol and heptanol have hardly any influence on the gelatinization temperature. Octanol raises the gelatinization temperature. More polar phenols lower the activation temperature of trehalase, while more apolar phenols will raise it. The gelatinization temperature of starch granules is more lowered by the polar polyphenols than by the more apolar phenols.The effect of high pressure on starch gelatinization was investigated in order to compare data from such a model system with the data on trehalase activation.The gelatinization temperature of starch granules is shifted upwards with about 3–5 K/1000 atm (1.013×105 kPa). Pressures higher than 1500 atm do not further increase the gelatinization temperature. However, no reversal of the effect, as occurs with protein conformational changes, is seen with pressure up to 2500 atm. Also for trehalase activation we find a continuous upward shift of the activation temperature with about 5–9 K/1000 atm. These data are in agreement with a thermal transition in a polysaccharide matrix, being the trigger in the heat activation of trehalase.  相似文献   

4.
The research presented herein provides valuable data with respect to the phosphorus content of starches from many potato (Solanum tuberosum L.) cultivars using an energy-dispersive X-ray fluorescence technique. In all starches examined, the phosphorus content ranged from 308 to 1244 ppm. Furthermore, the estimation of the starch characteristics of representative samples differing manifestly in their phosphorus content indicated that enhancing the starch phosphate resulted in significant increases in the swelling power, peak viscosity, and breakdown and significant but small increases in the onset and peak temperatures of gelatinization. Other starch quality parameters, such as the amylose content, median granule size, and the gelatinization enthalpy, did not change significantly due to the degree of phosphate substitution of starch.  相似文献   

5.
The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of their acetate content. Alternatively, two narrow size fractions of potato starch acetate granules were surface-peeled by chemical gelatinization in 5M CaCl(2), and the remaining cores were analyzed for acetyl content at different peeling levels. It was established that true surface peeling occurs in this medium and that the ester linkages are stable under the conditions applied. Both approaches led to the conclusion that the acetylation of potato starch granules is accompanied by a pronounced surface effect. The surface peeling method allows determination of the extent of substitution as a function of the radial position in the starch granule.  相似文献   

6.
Relationships between swelling capacities, pasting properties, rotational flow behaviour and textural properties of hydro-thermally heated wet-milled starch granules from corn dried between 60 and 130 °C were investigated. High-drying temperatures applied during the corn drying process conferred to the wet-milled starch granules (WSG) such a rigidity which reduced their swelling capacities, their water binding capacities and their water solubility index after gelatinization. These granules changes affected their pasting characteristics, their flow behaviour and several textural parameters of gel formed from the wet-milled starch granule after gelatinization. The rigidity of granules was a major factor determining the formation of either starch pastes or gels.  相似文献   

7.
The differences in response of 1% potato and 4% maize starch pastes to sodium caseinate inclusion were investigated. Pasting of the starches was performed at 95 °C for l h in a range of concentrations of sodium caseinate. Caseinate levels as low as 0.01% dramatically reduced the swelling volume of potato starch and hence the viscosity of the system. Since sodium chloride addition shows similar effects, it appears that caseinate acts through a non-specific ionic strength effect. The influence of caseinate on maize starch was less clear since it depended on the solvent medium. In distilled, deionized water, there was an increase in viscosity with increasing caseinate concentration, which may simply be explained by a contribution of the caseinate to the viscosity of the continuous phase. However, in 0.1M, pH 7.0 buffer the results suggest that caseinate may inhibit retrogradation as the viscosity of the system after ageing is reduced by its inclusion. It is suggested that phase separation between starch and caseinate is encouraged at high salt concentrations. As a consequence, both starch granule swelling and subsequent retrogradation are discouraged by caseinate in the buffer system, but not when pasting is carried out in distilled, deionized water.  相似文献   

8.
The gelatinization process of potato starch was isothermally investigated at 52.5∽65.3°C. The degree of gelatinization was measured by an enzymic digestion method using glucoamylase. When the starch–water suspension was incubated at a definite temperature the gelatinization reached a limit at each temperature after 30∽60 min incubation. So, it can be supposed that starch gelatinization reached an equilibrium state. It was found that gelatinization of potato starch occurred even at 52.5°C, a temperature which is lower than the so-called gelatinization temperature generally reported. Starch gelatinization was found to follow first order kinetics, and from the temperature dependence of the rate constants obtained, the activation energy was calculated to be 22±5 kcal/mol. The relationship between the degree of gelatinization of the starch whose gelatinization reached an equilibrium state at a definite temperature and the incubation temperature gave a transition curve expressed, by the fraction of gelatinized potato starch granules as a function of temperature, and the half-transition temperature was found to be 59.1°C. From the transition curve.the van’t Hoff enthalpy for gelatinization was determined to be +130±3 kcal/mol.  相似文献   

9.
Starches from three potato varieties and their respective transformants producing amylopectin starch were studied over a period of 3 years. The gelatinisation, swelling and dispersion properties were studied using differential scanning calorimetry (DSC), X-ray diffraction, swelling capacity measurements and a Brabender Viscograph.

The potato amylopectin starches (PAP) exhibited higher endothermic temperatures as well as higher enthalpies than the normal potato starches (NPS). PAP samples gave rise to an exceptionally sharp viscosity peak during gelatinisation and a relatively low increase in viscosity on cooling. Swelling capacity measurements showed that PAP granules swelled more rapidly, and that the dispersion of the swollen granules occurred at a lower temperature (85°C). Analysis of variance (ANOVA) also revealed that the year influenced the DSC results, and that both year and variety affect some of the Brabender parameters. Furthermore, the PAP and NPS samples were subjected to heat–moisture treatment at three different moisture levels, and the Brabender viscosity properties were studied.  相似文献   


10.
Sucrose fatty acid esters (SFAE) were adsorbed onto dry-heated (120?°C for 10, 20, 40, 60, and 120?min) wheat starch granules and extracted with ethyl ether in a Soxhlet apparatus without gelatinization of the starch granules. The amount of sucrose in the extracted SFAE was determined by the phenol sulfate method. A gradual increase of the sucrose from 159 to 712?μg, in SFAE per gram of starch, occurred with increasing dry-heating time and demonstrated the increased hydrophobicity of the starch granules. Increase of the SFAE was highly correlated (r?=?0.9816) to increase of the oil-binding capacity of the dry-heated wheat starch granules. Non-waxy rice, waxy rice, sweet potato, and potato starch granules also showed higher hydrophobicity after dry-heating by this method.  相似文献   

11.
Samples of epichlorohydrin crosslinked potato starch were prepared by using a high ratio of starch to water and alkali concentration below the gelatinization level. This yielded crosslinked samples that were partially crystalline, and where the number of crosslinks could be varied between 1 and 20 crosslinks per 100 anhydroglucose units. The degree of swelling varied regularly with degree of crosslinking, and the molecular weight between crosslinks Mc as derived from swelling data in a good swelling agent compared favorably with Mc derived from chemical analysis. From the heat of gelatinization of the crosslinked starches, as observed in a differential scanning calorimeter, for gelatinization in glycerol, water, and dimethylsulfoxide, a model for the gel state of the crosslinked starch is proposed. It is concluded that the entropy of melting is the determining factor in establishing the temperature of gelatinization.  相似文献   

12.
A new insight into the gelatinization process of native starches   总被引:1,自引:0,他引:1  
The gelatinization characteristics of seven different food starches (regular corn, high-amylose corn, waxy corn, wheat, rice, potato, and tapioca) were investigated. Each starch sample type was heated to 35, 40, 45, etc. up to 85 °C at 5 °C intervals, and freeze-dried. The treated samples were analyzed using light microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and high-performance size exclusion chromatography (HPSEC). When heated, granules underwent structural changes prior to the visible morphological changes that took place during gelatinization. The nature of these structural changes depended on starch type. These results indicate that the starch gelatinization process is more complex than a simple granular order-to-disorder transition.  相似文献   

13.
The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.  相似文献   

14.
Starch from the fruits of sweetsop (Anonna squamosa) and soursop (Anonna muricata) were isolated and purified and the fat, ash, phosphorus and protein contents measured. The amount of amylose present was determined spectrophotometrically and found to be very similar (19%) for both starches. Scanning electron microscopy showed very small indented and spherical granules from both with an average granule size of 4.84 μm and 4.72 μm, respectively. The physicochemical properties, namely the swelling power, solubility, pasting characteristics, paste clarity and freeze–thaw stability were studied to assess the functionality of the starch pastes as hydrocolloids. The sweetsop starch showed higher swelling power and solubility compared to soursop starch and had a lower gelatinization temperature indicating a weaker granular structure. Sweetsop starch exhibited a lower pasting temperature, higher viscosity peak, higher viscosity breakdown and lower setback, higher paste clarity and freeze–thaw stability compared to soursop starch. The low gelatinization temperature and high freeze thaw stability of sweetsop starch are comparable to that of waxy corn. The properties of sweetsop indicate that it has potential for application as a thickener in frozen foods.  相似文献   

15.
van der Sman  R. G. M.  Williams  J.  Bows  J. R. 《Food biophysics》2021,16(1):119-138

In this paper, we investigate the functionality of potato-based ingredients present in indirectly expanded snacks via careful analysis of their transformation during processing. This research is driven by the desire of industry to develop similar snacks for upcoming markets, where the potato-based ingredients are replaced by other starch sources, which are locally available and at a lower cost. For a range of reformulated snacks, the transformations of starchy ingredients are analysed with a wide variety of experimental methods, like DSC, XRD, and XRT. Our analysis shows that ingredients undergo little transformations during extrusion, which is indeed intended to be mild. During frying native tuber starches (potato and tapioca starch) fully gelatinize, while cereal starches show little gelatinization and swelling. Despite the gelatinization of tuber starches, the particulate character of ingredients is retained. Replacement of pregelatinized potato starch with other starches shows little change in structure. The evolution of the structure of the reformulated snacks are analysed with the CDS formalism. We conclude that gel formers and hard fillers present in the analysed formulations had little functionality regarding texture or structure. For texture, it appears to be required that the matrix composes of a bicontinuous structure of soft fillers, namely gelatinized tuber starches and potato dehydrates. Both these ingredients can be replaced by other tuber-starch sources if the aggregation of the two soft fillers can be prevented. Commercial availability of tuber flours can still be an issue.

  相似文献   

16.
Gelatinization mechanism of potato starch   总被引:5,自引:0,他引:5  
The non-Newtonian behavior and dynamic viscoelasticity of potato starch (Jaga kids red ’90, 21.0% amylose content) solutions after storage at 25 and 4°C for 24 h were measured with a rheogoniometer. The flow curves, at 25°C, of potato starch showed plastic behavior >1.0% (w/v) after heating at 100°C for 30 min. A gelatinization of potato starch occurred above 1.0% at room temperature. A very large dynamic viscoelasticity was observed when potato starch solution (3.0%) was stored at 4°C for 24 h and stayed at a constant value with increasing temperature. A small dynamic modulus of potato starch was observed upon addition of urea (4.0 M) at low temperature (0°C) even after storage at 25 and 4°C for 24 h. A small dynamic modulus was also observed in 0.05 M NaOH solution. Possible models of gelatinization and retrogradation mechanism of potato starch were proposed.  相似文献   

17.
苏旺  谢蕊蕊  王舰 《生态学杂志》2020,39(5):1566-1574
为探讨秸秆还田下旱作马铃薯块茎形成过程中淀粉合成关键酶活性及基因表达特性,以马铃薯栽培品种"青薯9号"为材料,以露地栽培为对照,设置秸秆还田处理,研究了马铃薯块茎形成过程中淀粉合成关键酶活性、基因表达、淀粉糊化及累积指标。结果表明:秸秆还田显著提高了旱作马铃薯SSS酶活性,降低了AGPP、GBSS酶活性,而对SBE酶活性没有显著影响;显著提高了SSⅡ、SSⅢ基因表达量,降低了AGPase、GBSSⅠ、SBEⅠ、SBEⅡ基因表达量;显著增加了淀粉崩解值,减少了淀粉各阶段粘度、回生值,而对淀粉糊化温度没有显著影响;显著增加了直链淀粉含量及直/支链淀粉比,减少了总淀粉含量;GBSS酶活性与AGPase、SBEⅠ基因表达量呈显著正相关,与直链淀粉含量、直/支链淀粉比呈显著负相关;SBE酶活性与SSⅡ基因表达量、峰值粘度、低谷粘度、最终粘度、总淀粉含量呈显著正相关,与崩解值、糊化温度呈显著负相关;AGPase基因表达量与直链淀粉含量呈显著负相关;GBSSⅠ基因表达量与最终粘度、回生值呈显著正相关,与糊化温度呈显著负相关;淀粉糊化与累积无显著相关性。  相似文献   

18.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

19.
Starches from waxy maize and potato were treated in methanol and 2-propanol either with or without 0.36% hydrochloric acid at 65 °C for 1 h. The granule morphology, molecular structure and pasting properties of the starches were determined and the effects of treatments on the granule and molecular structures of starch were investigated. Starch treated in alcohols without acid showed loss of native order through the hilum of granules, and no obvious molecular degradation was found. However, acid–alcohol treated starch showed many cracks inside granules, and both waxy maize and potato starches showed obvious molecular degradation after treated. Furthermore, the amylose chains and long chains of amylopectin of starch were more easily degraded with acid–alcohol treatment. The pasting viscosity of acid–alcohol treated starches were also obviously less than that of their counterpart native starch and starch after alcohol treatment. The extent of degradation of molecules and the decrease of pasting viscosity on potato starch after acid–alcohol treated were more obvious than that of waxy maize starch. The result indicates that the degradation preferentially occur in the amorphous region when starch treated by acid–alcohol, and the degradation of starch molecules enhances the amorphous excretion and the occurrence of cracks inside the granules.  相似文献   

20.
The gelatinization of waxy rice, regular rice, and potato starch suspensions (66% w/w moisture) was investigated by real-time small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) during heating and by fast ramp differential scanning calorimetry (DSC). The high-angle tail of the SAXS patterns suggested the transition from surface to mass fractal structures in the DSC gelatinization range. Amylose plays a major role in determining the dimensions of the self-similar structures that develop during this process as the characteristic power-law scattering behavior extends to lower scattering angles for regular than for waxy starches. Crystallinity of A-type starches is lost in the temperature region roughly corresponding to the DSC gelatinization range. At the end of the gelatinization endotherm, the B-type potato starch showed residual crystallinity (WAXD), while SAXS-patterns exhibited features of remaining lamellar stacks. Results indicate that the melting of amylopectin crystallites during gelatinization is accompanied by the (exothermic) formation of amorphous networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号