首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyphae and ascospores of Eremascus fertilis and E. albus were studied in ultrathin sections. The lateral wall of the hyphae had a thick electron-light inner layer and a thin dark outer layer. The septa had a simple central pore with or without a plug, and there were Woronin bodies in the vicinity. The wall of the ascospores of E. fertilis showed a thick light inner layer and a thin dark outer layer. In the wall of the spores of E. albus a dark fibrillar layer was present between the light inner layer and the dark outer layer. The spores of this species germinated with a tube the wall of which was continuous with a newly formed layer inside the spore wall.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z. W. O.)  相似文献   

2.
The wall of mature ascospores ofSaccharomyces cerevisiae showed in sections under the electron microscope a dark outer layer and a lighter inner layer. The latter was composed of a greyish inner part and a light outer part. During germination, the spore grew out at one side and the dark outer layer was broken. Of the light inner layer, the inner greyish part became the wall of the vegetative cell, but the extented part of the cell had a new wall.  相似文献   

3.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

4.
Ultrastructure of the ascospores of some species of the Torulaspora group   总被引:1,自引:1,他引:0  
Development and germination of the ascospores in species of the Torulaspora group of yeasts have been described. Most species had warty spores which, in sections, showed a dark outer layer consisting of the outer unit membrane of the prospore wall and a layer underneath formed at an early stage of development of the spores. In mature spores the light inner layer of the wall was delimited at the outside by a thin dark layer. The warts often contained dark material. The ascospores of two Pichia and three Debaryomyces species were studied for comparison; they differed in sections from the Torulaspora spores. The taxonomic implications of the ultrastructural observations have been discussed.  相似文献   

5.
Germination of the sporangiospore of Piptocephalis unispora Benjamin, observed by means of light and electron microscopy, involved the formation of a new inner wall which became continous with the inner layer of the wall of the germ tube. The outer wall layer of the germ tube was continous with the original inner wall layer of the dormant spore. Preliminary details of appressorium structure were noted. Nutritional experiments indicated that sporangiospores required external sources of utilisable nitrogen and carbon compounds for maximal swelling and germ tube production. Limited development occurred when either nutrient was supplied singly. Comparison of germination of the asexual spore with that in other Mucorales, especially the Kickxellaceae, has been made, and the merosporangial status in P. unispora discussed.Non-Standard Abbreviations CH casein hydrolysate - Q spore quotient  相似文献   

6.
Abstract: The spore Rhabdosporites (Triletes) langii (Eisenack) Richardson, 1960 is abundant and well preserved in Middle Devonian (Eifelian) ‘Middle Old Red Sandstone’ deposits from the Orcadian Basin, Scotland. Here it occurs as dispersed individual spores and in situ in isolated sporangia. This paper reports on a detailed light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of both dispersed and in situ spores. The dispersed spores are pseudosaccate with a thick walled inner body enclosed within an outer layer that was originally attached only over the proximal face. The inner body has lamellate/laminate ultrastructure consisting of fine lamellae that are continuous around the spore and parallel stacked. Towards the outer part of the inner body these group to form thicker laminate structures that are also continuous and parallel stacked. The outer layer has spongy ultrastructure. In situ spores preserved in the isolated sporangia are identical to the dispersed forms in terms of morphology, gross structure and wall ultrastructure. The sporangium wall is two‐layered. A thick coalified outer layer is cellular and represents the main sporangium wall. This layer is readily lost if oxidation is applied during processing. A thin inner layer is interpreted as a peritapetal membrane. This layer survives oxidation as a tightly adherent membranous covering of the spore mass. Ultrastructurally it consists of three layers, with the innermost layer composed of material similar to that comprising the outer layer of the spores. Based on the new LM, SEM and TEM information, consideration is given to spore wall formation. The inner body of the spores is interpreted as developing by centripetal accumulation of lamellae at the plasma membrane. The outer layer is interpreted as forming by accretion of sporopollenin units derived from a tapetum. The inner layer of the sporangium wall is considered to represent a peritapetal membrane formed from the remnants of this tapetum. The spore R. langii derives from aneurophytalean progymnosperms. In light of the new evidence on spore/sporangium characters, and hypotheses of spore wall development based on interpretation of these, the evolutionary relationships of the progymnosperms are considered in terms of their origins and relationship to the seed plants. It is concluded that there is a smooth evolutionary transition between Apiculiretusispora‐type spores of certain basal euphyllophytes, Rhabdosporites‐type spores of aneurophytalean progymnosperms and Geminospora‐/Contagisporites‐type spores of heterosporous archaeopteridalean progymnosperms. Prepollen of basal seed plants (hydrasperman, medullosan and callistophytalean pteridosperms) are easily derived from the spores of either homosporous or heterosporous progymnosperms. The proposed evolutionary transition was sequential with increasing complexity of the spore/pollen wall probably reflecting increasing sophistication of reproductive strategy. The pollen wall of crown group seed plants appears to incorporate a completely new developmental mechanism: tectum and infratectum initiation within a glycocalyx‐like Microspore Surface Coat. It is unclear when this feature evolved, but it appears likely that it was not present in the most basal stem group seed plants.  相似文献   

7.
Spore wall morphogenesis of Lycopodium clavatum was observed by transmission electron microscopy. The spore plasma membrane indicates the reticulate spore sculpture shortly after meiosis. The mature spore wall of this species consists of two layers, inner endospore and outer exospore. There is no perispore in the sporoderm of this species. The exospore formation begins during the tetrad stage; and this layer is divided into two distinct sublayers, an outer lamellar layer and an inner granular layer. The lamellar layer is formed on the sculptured spore plasma membrane. Additional lamellae attach to this layer in a centripetal direction. For that reason, this layer may be derived from spore cytoplasm. The granular layer is formed only in the proximal region following lamellar layer formation, and it also may be derived from spore cytoplasm. The endospore is formed lastly and seems to be derived from spore cytoplasm as well. Accordingly, the spore sculpture of this species may be under the genetic control of the spore nucleus.  相似文献   

8.
Development of the ascospores of Sporopachydermia lactativora and S. cereana was studied in ultrathin sections. The spores have a very thick wall consisting of a thin dark outer layer and a double light inner layer the outer part of which is very wide and often irregular. During germination, this part disappears, the outer dark layer breaks up and the inner part of the light layer remains around the protoplast during development to a vegetative cell.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).  相似文献   

9.
Spore wall morphogenesis of Equisetum arvense was observed by transmission electron microscopy. The spore wall of E. arvense consists of four layers: intine, exine, middle layer, and elater. The exine is formed after meiosis and consists of two distinct layers. The inner portion of the exine is formed in advance of the outer layer of the exine. The middle layer is deposited after the exine. The elater can be subdivided into two distinct layers. The inner layer comprises longitudinal microfibrils that surround the spore in spiral fashion. The elater appears as thin beltlike structures at the beginning of development. Numerous microtubules were observed on the inner surface of the plasmodial plasma membrane opposite the inner layer of the elater, suggesting that these microtubules are involved with the synthesis of inner elater microfibrils. The matrix of the outer elater is formed by discharge of granules from the plasmodial cytoplasm. The intine is the last component of the sporoderm to be formed.  相似文献   

10.
Spore wall morphogenesis ofOphioglossum thermale var.nipponicum was examined by transmission electron microscopy. The spore wall of this species consists of three layers: endospore, exospore, and perispore. The spore wall development begins at the tetrad stage. At first, the outer undulating lamellar layer of the exospore (Lo) is formed on the spore plasma membrane in advance of the inner accumulating lamellar layer (Li) of the exospore. Next, the homogeneous layer of the exospore (H) is deposited on the outer lamellar layer. Both lamellar layers may be derived from spore cytoplasm; and the homogeneous layer, from the tapetum. Then the endospore (EN) is formed. It may be derived from spore cytoplasm. The membranous perispore (PE), derived from the tapetum, covers the exospore surface as the final layer. Though the ornamentation of this species differs distinctly from that ofO. vulgatum, the results mentioned above are fundamentally in accordance with the data obtained fromO. vulgatum (Lugardon, 1971). Therefore, the pattern of spore wall morphogenesis appears to be very stable in the genusOphioglossum.  相似文献   

11.
Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections.Budding in yeasts of the speciesSaccharomycodes ludwigii, Hanseniaspora valbyensis andWickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall between the ridges consisted of the scar plug left by the former budding and opened up in the formation of the next bud. The wall of the bud arose from under the wall of the mother cell.In the yeasts of the speciesNadsonia elongata more than one bud might be formed from the same plug.InSchizoblastosporion starkeyi-henricii the scar ridges were close together and apparently not separated by the entire plug.In all species a cross wall was formed between mother cell and bud which consisted of an electron-light layer between two layers of more electron-dense material. The cells separated along the light layer.The authors wish to thank Dr J. A. Barnett for corrections of the English text, and Mr J. Cappon for drawing Fig. 1.  相似文献   

12.
The process of discharge papilla (DP) formation in Allomyces macrogynus was studied by light and electron microscopy. The plug of the DP was first deposited between the plasmalemma and the wall of the zoosporangium (ZS). The wall above the plug subsequently was eroded away. Deposition of a new inner wall layer in the sporangium held the plug in place and thickening of the layer formed a collar around the plug. Further deposition of material after this stage resulted in the characteristic pulley-shape. The plug material appeared homogeneous in electron micrographs but there was evidence of an outer layer. Digestion of the plug at the time of spore release was from within.Abbreviations DP discharge papilla - ZS zoosporangium  相似文献   

13.
Ultrastructural studies of sporulation in Bacillus sphaericus.   总被引:5,自引:12,他引:5       下载免费PDF全文
Spore septum formation in Bacillus sphaericus 9602 occurs 2 h after the end of exponential growth at one end of the vegetative cell, which retains a uniform diameter. The apparently rigid spore septum contains an inner cell wall layer which disappears when the sporulation septum "bulges" into the mother cell cytoplasm. This process occurs simultaneously with terminal swelling at the end of the cell containing the spore septum. It is suggested that the inner cell wall layer is peptidoglycan and that its dissolution and the terminal swelling are consequences of a localized autolysis. Engulfment of the forespore by membrane proliferation results in the production of a forespore surrounded by two flexible, closely apposed membranes. These membranes appear to become more rigid as a peptidoglycan-like layer appears between them, concomitant with the condensation of the forespore nucleoid into a crescent-shaped structure. After nuclear condensation, visible development of distinct cortex, primordial cell wall, and spore coat layers begin, and the forespore cytoplasm assumes an appearance similar to that of a refractile spore. The spore coats consist of an amorphous inner layer, a lamellar midlayer, and a structured outer layer. As cortex synthesis and spore coat assembly continue, exosporium development commences close to that portion of the mother cell plasma membrane which surrounds the forespore. The exosporium is lamellar and in tangential section is seen to have a hexagonal arrangement of subunits. The timing of these morphological events has the expected correlation with the appearance of unique enzyme activites required for cortex synthesis.  相似文献   

14.
The ultrastructure of developing basidiospores in Rhizopogon roseolus is described. When viewed in the fruiting body chamber using scanning electron microscopy, basidiospores appear narrowly ellipsoid and have smooth walls. Eight basidiospores are usually produced on the apex of each sterigma on the basidium. Transmission electron micrographs showed that basidiospores formed by movement of cytoplasm (including the nuclei) via the sterigmata, and then each basidiospore eventually became separated from its sterigma by an electron-lucent septum. The sterigma and basidium subsequently collapsed, resulting in spore release. Freshly released spores retained the sterigmal appendage connected to the collapsed basidium. After spore release, the major ultrastructural changes in the spore concerned the lipid bodies and the spore wall. During maturation, lipid bodies formed and then expanded. Before release, the spore wall was homogeneous and electronlucent, but after release the spore wall comprised two distinct layers with electron-dense depositions at the inner wall, and the dense depositions formed an electron-dense third layer. The mature spore wall complex comprised at least four distinct layers: the outer electron-lucent thin double layers, the mottled electron-dense third layer, and the electron-lucent fourth layer in which electron-lucent granular substances were dispersed.  相似文献   

15.
We previously reported a new species Paenibacillus motobuensis. The type strain MC10 was stained gram-negative, but had a gram-positive cell wall structure and its spore had a characteristic star shape. The spore and sporulation process of P. motobuensis strain MC10 were examined by electron microscopy using the technique of freeze-substitution in thin sectioning. The structure of the dormant spore was basically the same as that of the other Bacillus spp. The core of the spore was enveloped with two main spore components, the cortex and the spore coat. In thin section, the spore showed a star-shaped image, which was derived from the structure of the spore coat, which is composed of three layers, namely the inner, middle and outer spore coat. The middle coat was an electron-dense thick layer and had a characteristic ridge. By scanning electron microscopic observation, the ridges were seen running parallel to the long axis of the oval-shaped spore. The process of sporulation was essentially the same as that of the other Bacillus spp. The forespore was engulfed by the mother cell membrane, then the spore coat and the cortex were accumulated in the space between the mother cell membrane and forespore membrane. The mother cell membrane seemed to participate in the synthesis of the spore coat. MC10 strain showed almost identical heat resistance to that of B. subtilis.  相似文献   

16.
Summary The spore mother cells ofEquisetum fluviatile undergo meiotic division, each forming a tetrad of spores. The spore protoplasts are separated from each other by an accumulation of mitochondria (organellar plate) at first and later on by plasma membranes, no cell wall is formed. The first layer of the sporoderm, the exine, originates from the plasmodial tapetum and is deposited at the outer side of the plasmalemma of the young spore. The exine reaches a thickness of about 330 nm. In the phase of spore greening the so-called perine, originating from the tapetum, is placed onto the exine and the inner layer of the sporoderm, the intine, is formed from the spore protoplast. The mature spore, about 40 m in diameter, does not enter dormancy and remains viable only for a few days.Member of the Study group on electron microscopy at the TierÄrztliche Hochschule Hannover.  相似文献   

17.
The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.  相似文献   

18.
木姜子油细胞发育的超微结构研究   总被引:1,自引:0,他引:1  
利用超薄切片法和透射电镜研究了木姜子(Litsea pungens Hemsl.)油细胞的发育过程。油细胞3层细胞壁的发育可分为4个阶段,阶段1:油细胞仅有初生纤维素壁层,又可分为原始细胞和细胞 泡化两个时期。此阶段质体具透明小泡和黑色嗜锇物质,并与液泡融合。阶段2:木栓质化壁层的形成,片层状木栓质不断叠加在初生纤维素壁内侧,其细胞结构与前期相似,阶段3:内纤维素壁层的形成,较厚而松散的内纤维素壁层叠加在木栓质化壁层的内侧,在内纤维素壁层中可见黑色嗜锇物质,胞间连丝成为被阻塞的特化结构,此时大液泡被嗜锇油脂充满,成为油囊。阶段4:油细胞成熟及细胞质解体,杯形构造由内纤维素壁层向细胞腔内突起形成,油囊由液泡膜包被连接到杯形构造上,油呈浅灰色嗜锇状态,其细胞质和细胞器解体,变得电子不透明或呈杂乱状态。  相似文献   

19.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

20.
The ontogeny of spores of the liverwort Riccardia pinguis was studied at the light and electron microscope levels. Three stages of development were arbitrarily defined: spore mother cell (SMC); early tetrad with nonpigmented and unsculptured walls; and mature tetrad with pigmented and sculptured spore walls. The SMC is quadrilobed with a two-layered SMC wall, containing a central nucleus, many chloroplasts, spherosomes, and other organelles. During and following meiosis cell plates form from coalescing Golgi vesicles. These plates by continued coalescence eventually form a septum, completing the tetrad. This septum comprises middle lamella and primexine; within the latter the exine forms. By continued addition of vesicle contents to the septum and dorsal surfaces of the tetrad, the exine (sexine and nexine) and intine layers of the spore wall are laid down. The contents of the vesicles change successively during wall formation, corresponding to the different wall layers being formed. It is concluded that wall formation is under the exclusive control of the spore protoplast, and that the pattern of the mature exine is determined by the primexine. Rearrangement of organelles and other cellular components during sporogenesis is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号