首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been demonstrated previously that mixed cell suspensions from the female reproductive tract consisting of human epithelial and stromal cells were capable of presenting foreign antigen to autologous T cells. There have been, however, no reported studies examining antigen presentation by isolated epithelial cells from the human female reproductive tract. It is now shown that freshly isolated epithelial cells from the uterine endometrium constitutively express MHC class II antigen and that class II was upregulated on cultured epithelium by interferon gamma (IFNγ). Using a highly purified preparation, it was demonstrated that these epithelial cells were able to process and present tetanus toxoid recall antigen driving autologous T cell proliferation. Cells isolated from the basolateral sub-epithelium stroma were also potent antigen presenting cells in this model system. Thus, isolated endometrial epithelial cells were able to directly process and present antigen to T cells and may be responsible for the transcytosis and delivery of antigen to professional antigen presenting cells found in the sub-epithelial stroma.  相似文献   

2.
MHC class II invariant chains in antigen processing and presentation   总被引:1,自引:0,他引:1  
Most protein antigens cannot elicit a T-cell response unless they are processed to peptides, which are then presented to T lymphocytes by surface MHC class II molecules. Recent evidence supports an essential role of the invariant chain associated with class II MHC polypeptides in antigen processing.  相似文献   

3.
Liposome-encapsulated protein Ag were used to dissect the roles of various subcellular compartments in Ag processing for class I and class II MHC-restricted presentation. Macrophages exhibited efficient processing of Ag encapsulated in acid-resistant dioleoylphosphatidylcholine/dioleoylphosphatidylserine liposomes, which sequester their contents from potential endosomal processing events and release them only after delivery to lysosomes. Lysosomal processing was demonstrated for all four Ag studied (OVA, murine hemoglobin, bovine ribonuclease A, and hen egg lysozyme), establishing the recycling of immunogenic peptides from lysosomes after Ag processing. These acid-resistant liposomes did not engender class I processing. Ag encapsulated within acid-sensitive dioleoylphosphatidylethanolamine/palmitoylhomocysteine liposomes were also processed via the class II pathway. Of the four Ag encapsulated in liposomes, one, OVA, was tested for ability to stimulate a class I-specific response. OVA in acid-resistant liposomes did not engender a class I-specific response. In contrast, OVA encapsulated in acid-sensitive liposomes was presented by class I molecules, albeit less efficiently than it was presented by class II molecules. We interpret this to be the result of the release of a minor portion of the encapsulated Ag into the cytosol.  相似文献   

4.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

5.
Dendritic cells (DCs) initiate primary immune responses by presenting pathogen-derived antigens in association with major histocompatibility Class II molecules (MHC II) to T cells. In DCs, MHC II is constitutively synthesized and loaded at endosomes with peptides from hydrolyzed endogenous proteins or exogenously acquired antigens. Whether peptide loaded MHC II (MHC II-p) is subsequently recruited to and stably expressed at the plasma membrane or degraded in lysosomes is determined by the status of the DC. In immature DCs, MHC II-p is ubiquitinated after peptide loading, driving its sorting to the luminal vesicles of multivesicular bodies. These luminal vesicles, and the MHC II-p they carry, are delivered to lysosomes for degradation. MHC II-p is inefficiently ubiquitinated in DCs that are activated by pathogens or inflammatory stimuli, thus allowing its transfer to and stable expression at the plasma membrane.  相似文献   

6.
Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.  相似文献   

7.
Neonates are clearly more susceptible to severe disease following infection with a variety of pathogens than are adults. However, the causes for this are unclear and are often attributed to immunological immaturity. While several aspects of immunity differ between adults and neonates, the capacity of dendritic cells in neonates to process and present antigen to CD8+ T cells remains to be addressed. We used human CD8+ T cell clones to compare the ability of neonatal and adult monocyte-derived dendritic cells to present or process and present antigen using the MHC class I pathway. Specifically, we assessed the ability of dendritic cells to present antigenic peptide, present an HLA-E-restricted antigen, process and present an MHC class I-restricted antigen through the classical MHC class I pathway, and cross present cell-associated antigen via MHC class I. We found no defect in neonatal dendritic cells to perform any of these processing and presentation functions and conclude that the MHC class I antigen processing and presentation pathway is functional in neonatal dendritic cells and hence may not account for the diminished control of pathogens.  相似文献   

8.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

9.
We have recently shown that the LC3/Atg8 lipidation machinery of macroautophagy is involved in the internalization of MHC class I molecules. Decreased internalization in the absence of ATG5 or ATG7 leads to MHC class I surface stabilization on dendritic cells and macrophages, resulting in elevated CD8+ T cell responses during viral infections and improved immune control. Here, we discuss how the autophagic machinery supports MHC class II restricted antigen presentation, while compromising MHC class I presentation via internalization and degradation.  相似文献   

10.
Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells.  相似文献   

11.
12.
Rheumatoid arthritis is characterized by synovial joint infiltration of activated CD4(+) T cells and MHC class II(+) APC, and is linked to specific HLA-DR alleles. Candidate autoantigens in synovial fluid and cartilage include type II collagen (CII) and cartilage gp39 (HCgp39). Using preparations of native Ag and T cells derived from Ag-immunized DR4-transgenic mice, we determined that human ex vivo differentiated DR4(+) dendritic cells (DC) and macrophages (Mphi) can mediate MHC class II presentation of CII or HCgp39 epitopes. The form of the Ag (soluble, partially degraded, or particulate) delivered to the APC influenced its presentation by DC and Mphi. DC efficiently presented partially degraded, but not native CII alpha-chains, while Mphi presentation was most efficient after phagocytosis of bead-conjugated CII. Both DC and Mphi presented soluble HCgp39, and activated Mphi from some donors presented epitopes derived from endogenously synthesized HCgp39. When synovial fluid from rheumatoid arthritis patients was used as a source of Ag, DC presentation of HCgp39 and CII epitopes was efficient, indicating that synovial fluid contains soluble forms of CII and HCgp39 amenable to internalization, processing, and presentation. These data support the hypothesis that CII and HCgp39 are autoantigens and that their class II-mediated presentation by DC and Mphi to T cells in vivo has a critical role in the pathogenesis of human rheumatoid arthritis.  相似文献   

13.
Antigen presentation by liposomes bearing class II MHC and membrane IL-1   总被引:1,自引:0,他引:1  
Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen conalbumin was presented on the surface of the liposomes as native undigested protein. When the liposomes presented native conalbumin, Iak, and membrane IL-1, significant proliferation occurred, but if the liposomes lacked membrane IL-1, the proliferation of the T-cell clone and the spleen cells reached only about 60 percent of the previous signal. Native conalbumin and class II antigen alone were required for T-cell activation, while membrane IL-1 only amplified the response. When the liposomes were made with only Iak and membrane IL-1, lacking conalbumin, there was no proliferation of antigen-specific target cells. These results indicated that in this synthetic system, membrane IL-1 increases the magnitude of the response but is not essential for the proliferative response of antigen-specific T cells.  相似文献   

14.
Human plasmacytoid dendritic cells (pDCs)(2) exploit Ag uptake receptors like CD32a for internalization of exogenous Ags. Activation of pDC by TLR9 ligand CpG-C induces strong maturation. Surprisingly, we observed that CpG-C-stimulated pDCs showed impaired Ag-specific T cell proliferation whereas the induction of allogeneic T cell proliferation was not affected. We demonstrated that signals from TLR9 caused a rapid down-regulation of the capacity of pDC to take-up Ab-Ag complexes without altering their CD32a expression, thus explaining the reduced Ag presentation. The recent contrasting biological responses that were observed upon TLR9 ligation in pDCs prompted us to study the effect of several TLR9 ligands. We observed that type I IFN-inducer CpG-A, localizing in the early endosomal compartment, did not affect CD32a function, whereas CpGs localizing in the late endosomes and inducing pDC maturation clearly inhibited CD32a-mediated Ag uptake and presentation. We conclude that TLR9 ligands not only determine the type of response, i.e., type I IFN production (innate immunity) or maturation (adaptive immunity), but also directly affect Ag presentation capacity of pDCs. We hypothesize that pDC, once activated via TLR9-ligands reaching the late endosomes, can only present initially sampled Ags and thus are protected from uptake and processing of additional potential self-Ags.  相似文献   

15.
The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.  相似文献   

16.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

17.
18.
Resting B lymphocytes have been credited with inducing T cell tolerance to Ig-derived and monovalent self-Ags that are internalized via the B cell receptor (BCR). These conclusions are predicated upon the assumptions that resting B cells display BCR-associated peptides in class II MHC and that the cells remain quiescent during the course of experimental manipulation. To determine whether resting B cells display BCR-associated epitopes in class II MHC, we devised a sensitive assay that averted potential activation of B cells by Ag and minimized activation by prolonged culture. Ex vivo, Percoll-fractionated B cells expressing a kappa transgene encoding a T cell epitope were cultured with a reactive T cell hybridoma for 12 h. Whereas low density, LPS-activated, and BCR-activated B cells elicited significant IL-2 from the T cell hybridoma, resting high density B cells did not. Parallel results were obtained with normal B cells expressing a second epitope encoded by an endogenous V(H) gene. Anergic B cells, which are uniformly low density, also significantly stimulated the T cell hybridoma. Finally, longer culture periods with normal B cells resulted in a higher degree of B cell activation and significant stimulation of reactive T cell hybridomas. Our results provide evidence that activation of B cells profoundly enhances the processing and presentation of BCR-associated Ags.  相似文献   

19.
The presentation of peptides by class I histocompatibility molecules plays a central role in the cellular immune response to virally infected or transformed cells. The main steps in this process include the degradation of both self and 'foreign' proteins to short peptides in the cytosol, translocation of peptides into the lumen of the endoplasmic reticulum, binding of a subset of peptides to assembling class I molecules and expression of class-I-peptide complexes at the cell surface for examination by cytotoxic T cells. A molecular understanding of most of these steps is emerging, revealing a remarkable coordination between the processes of peptide translocation, delivery and binding to class I molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号