首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH 4 + ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.  相似文献   

3.
The nodulation regulon of Rhizobium meliloti AK631 includes several operons (nodABC, hsnABC, hsnD, efn locus) which have in common a consensus promoter sequence called the nod box. A synthetic nod box probe was used to identify two additional nod boxes, n4 and n5, which were subcloned for study. By constructing lac fusions, we show that n4 and n5 sponsor induction of downstream regions as previously shown for n1-nodABC and n2-hsnABC. Using site-directed Tn5 mutagenesis, we find that the n5 locus plays a significant role in nodulation of alfalfa and sweetclover, whereas the n4 locus is important for alfalfa, but not for sweetclover. Hybridization data suggest that the n5 locus is conserved among Rhizobium species. In contrast, the n4 locus seems to be unique to Rhizobium meliloti strains, in agreement with the host-specific phenotype of n4 locus mutants. Thus, the use of a promoter probe allows us to identify nodulation genes which may be overlooked by standard methods such as random Tn5 mutagenesis.  相似文献   

4.
Summary Azorhizobium caulinodans strain ORS571 induces nitrogen-fixing nodules on roots and stem-located root primordia of Sesbania rostrata. Two essential Nod loci have been previously identified in the bacterial genome, one of which (Nod locus 1) shows weak homology with the common nodC gene of Rhizobium mehloti. Here we present the nucleotide sequence of this region and show that it contains three contiguous open reading frames (ORFA, ORFB and ORFC) that are related to the nodABC genes of Rhizobium and Bradyrhizobium species. ORFC is followed by a fourth (ORF4) and probably a fifth (ORF5) open reading frame. ORF4 may be analogous to the nod[ gene of R. leguminosarum, whereas ORF5 could be similar to the rhizobial nodF genes. Coordinated expression of this set of five genes seems likely from the sequence organization. There is no typical nod promoter consensus sequence (nod box) in the region upstream of the first gene (ORFA) and there is no nodD-like gene. LacZ fusions constructed with ORFA, ORFB, ORFC, and ORF4 showed inducible -galactosidase expression in the presence of S. rostrata seedlings as well as around stem-located root primordia. Among a series of phenolic compounds tested, the flavanone naringenin was the most efficient inducer of the expression of this ORS571 nod gene cluster.  相似文献   

5.
Regulation of nod gene expression in Bradyrhizobium japonicum   总被引:14,自引:0,他引:14  
Summary The best inducers of nod:: lacZ translational fusions in Bradyrhizobium japonicum are isoflavones, primarily genistein and daidzein. Upstream of the nodABC genes in B. japonicum is a novel gene, nodY, which is coregulated with nodABC. Measurements of the activity of lacZ fusions to the nodD gene of B. japonicum show that this gene is inducible by soybean seed extract and selected flavonoid chemicals. The induction of the nodY ABC and nodD operons appears to require a functional nodD gene, indicating that the nodD gene product controls its own synthesis as well as other nod genes.  相似文献   

6.
During recent years signals leading to the early stages of nodulation of legumes by rhizobia have been identified. Plant flavonoids induce rhizobialnod genes that are essential for nodulation. Most of thenod gene products are involved in the biosynthesis of lipo-oligosaccharide molecules. The commonnodABC genes are minimally required for the synthesis of all lipo-oligosaccharides. Host-specificnod gene products in a givenRhizobium species are responsible for synthesis or addition of various moieties to those basic lipo-oligosaccharide molecules. For example, inR. leguminosarum, thenodFEL operon is involved in the production of lipo-oligosaccharide signals that mediate host specificity. AnodFE-determined highly unsaturated fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for inducing nodule meristems and pre-infection thread structures on the host plantVicia sativa. Lipo-oligosaccharides also trigger autoregulation of nodulation in pea and, if applied in excessive amounts to a legume, can prevent nodulation and thereby might play a role in competition. During our studies on the biosynthesis of lipo-oligosaccharides, we discovered that, besides the lipo-oligosaccharides, other metabolites are synthesizedde novo after induction of thenod genes. These novel metabolites appeared to be phospholipids, containing either one of the three fatty acids which are made by the action of NodFE inR. leguminosarum.  相似文献   

7.
The role of the hsnD (nodH) gene in the determination of the host-specific nodulation ability of Rhizobium meliloti was studied by expressing the common nodulation genes (nodABC) with or without the hsnD gene in Escherichia coli and testing for biological activity on various leguminous plants. In this way, four categories of plants were established. Upon infection with E. coli carrying the nodABC construct, root hair deformation (Had) was detected on clovers while the hsnD gene was additionally needed for the elicitation of the same response on alfalfa and sweet clover. A weak root hair deformation was seen on siratro by inoculation with E. coli harbouring the nodABC genes and was highly increased when hsnD was also introduced. Cowpea and Desmodium did not respond to any of the E. coli strains constructed. Exudates or cytosolicfractions of the respective E. coli derivatives elicited the same root hair deformation as the intact bacteria. These data indicate that not only the nodABC gene products but also the hsnD product are involved in the synthesis of Had factors. Subclones expressing only the nodA, nodB, or nodC genes or the same genes in pairs (nodAB, nodBC, nodAC) did not provide a compound with activity comparable to the NodABC factor, suggesting that all three genes are required for the production of the Had factor which is active on clover. Coinoculation of alfalfa plants with two strains of E. coli, one carrying the nodABC genes and the other expressing only hsnD, or combining exudates or cytosolic fractions from these strains did not result in root hair deformation on alfalfa. These data indicate that the HsnD protein itself or its product is not an additional alfalfa-specific extracellular signal but more likely is enzymatically involved in the modification of the basic compound determined by the nodABC genes.  相似文献   

8.
The synthesis of Rhizobium meliloti Nod signal molecules, encoded by the nod gene products, is finely regulated. A negative control of plasmid-borne nod gene expression is provided by the NoIR repressor encoded by the chromosomal noIR gene. NoIR was previously shown to downregulate the expression of the activator nodD1 gene and the common nodABC operon by binding to an overlapping region of the two promoters adjacent to the n1 nod-box (Kondorosi et al., 1989). We demonstrate here that NoIR also controls the expression of two additional genes, nodD2 and nodM, but does not directly regulate the expression of the host-specific nod genes located downstream of the n2, n3 and n5 nod-boxes. Thus, the nod genes are differentially regulated by NoIR and only those providing common nodulation functions, by determining the synthesis of the core Nod factor structure, are subjected to this negative regulation. Furthermore, NoIR has a strong negative effect on the production of Nod metabolites, the level of which may serve as a fine-tuning mechanism for optimal nodulation, specific to host-plant genotypes. In addition, it elicits preferential synthesis of Nod factors carrying unsaturated C16 fatty acids. Expression of noIR was high both in the free-living bacterium and in the bacteroid and it was downregulated by its own product and by the nod gene inducer luteolin.  相似文献   

9.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

10.
11.
Rhizobia are soil bacteria which symbiotically infect legume roots and generate nodules in which they fix atmospheric nitrogen for the plant in exchange for photosynthetically fixed carbon. A crucial aspect of signal exchange between these symbionts is the secretion of phenolic compounds by the host root which induce nodulation gene expression in the bacteria. Stimulation of nod gene expression by host phenolics is required for nodule formation, is biochemically specific at 10-6 M, and is mediated by nodD. We and others have shown that rhizobia display chemotaxis to 10-9 M of the same phenolic compounds. Chemotaxis to inducer phenolics is selectively reduced or abolished by mutations in certain nod genes governing nodulation efficiency or host specificity. Conversely, mutations in rhizobia that affect general motility or chemotaxis have substantial effects on nodulation efficiency and competitiveness. These findings suggest that microbes entering the rhizosphere environment may utilize minor, non-nutrient components in root exudates as signals to guide their movement towards the root surface and elicit changes in gene expression appropriate to this environment.  相似文献   

12.
Summary The expression of the nodD and nodYABC operons of Bradyrhizobium japonicum is repressed by the addition of ammonia. Repression of nodYABC expression is probably due to the effect on nodD since NodD positively regulates itself, as well as other nod operons. The effect of ammonia is independent of the known nitrogen regulatory protein, NtrC, and another regulatory protein for nitrogen fixation, NifA.  相似文献   

13.
14.
Pairs of Rhizobium meliloti nod mutants were co-inoculated onto alfalfa (Medicago saliva L.) roots to determine whether one nod mutant could correct, in situ, for defects in nodule initiation of another nod mutant. None of the Tn5 or nod deletion mutants were able to help each other form nodules when co-inoculated together in the absence of the wild-type. However, as previously observed, individual nod mutants significantly increased nodule initiation by low dosages of co-inoculated wild-type cells. Thus, nod mutants do produce certain signal substances or other factors which overcome limits to nodule initiation by the wild-type. When pairs of nod mutants were co-inoculated together with the wild-type, the stimulation of nodulation provided by individual nodABC mutants was not additive. However, clearly additive or synergistic stimulation was observed between pairs of mutants with a defective host-specificity gene (nodE, nodF, or nodH). Each pair of host-specificity mutants stimulated first nodule formation to nearly the maximum levels obtainable with high dosages of the wild-type. Mutant bacteria were recovered from only about 10% of these nodules, whereas the co-inoculated wild-type was present in all these nodules and substantially outnumbered mutant bacteria in nodules occupied by both. Thus, these mutant co-inoculants appeared to help their parent in situ even though they could not help each other. Sterile culture filtrates from wild-type cells stimulated nodule initiation by low dosages of the wild-type, but only when a host-specificity mutant was also present. The results from our studies seem consistent with the possibility that pairs of host-specificity mutants are able to help the wild-type initiate nodule formation by sustained production of complementary signals required for induction of symbiotic host responses.  相似文献   

15.
Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.Abbreviations GS Glutamine synthetase - GOGAT Glutamate synthase - ATase Adenylyl transferase - Ntr Nitrogen regulatory system  相似文献   

16.
17.
为研究光、生长素和油菜素内酯在基因层次上的互作机制,开发了转录调控元件识别工具OCMMat,其中,在对共表达基因信息和直系同源基因信息进行整合时,利用了转录调控元件在直系同源基因启动子中的富集性.利用该方法发现,CYP7281基因和AUR3基因启动子含有3个相同的调控模序GAGACA、AAGAAAAA、ATCATG,它们分别承担了AuxRE元件、GT元件和GT辅助元件的功能.其中,ATCATG模序是目前尚未报道过的调控元件,与AAGAAAAA模序的距离相对恒定.基于调控元件识别结果,构建了CYP7281基因和AUR3基因响应光、生长素和油菜素内酯的转录调控模型,模型显示:光信号和生长素、油菜素内酯信号在CYP72B1基因和AUR3基因的转录调控元件上相互交叠,而生长素和油菜素内酯信号则在转录因子ARF水平上相交.  相似文献   

18.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

19.
Inoculation of Vicia sativa subsp. nigra (V. sativa) roots with Rhizobium leguminosarum biovar. viciae (R.l. viciae) bacteria substantially increases the ability of V. sativa to induce rhizobial nodulation (nod) genes. This increase is caused by the additional release of flavanones and chalcones which all induce the nod genes of R.l. viciae (K. Recourt et al., Plant Mol Biol 16: 841–852). In this paper, we describe the analyses of the flavonoids present in roots of V. sativa. Independent of inoculation with R.l. viciae, these roots contain four 3-O-glycosides of the flavonol kaempferol. These flavonoids appeared not capable of inducing the nod genes of R.l. viciae but instead are moderately active in inhibiting the activated state of those nod genes. Roots of 7-day-old V. sativa seedlings did not show any kaempferol-glycosidase activity consistent with the observation that kaempferol is not released upon inoculation with R.l. viciae. It is therefore most likely that inoculation with infective (nodulating) R.l. viciae bacteria results in de novo flavonoid biosynthesis and not in liberation of flavonoids from a pre-existing pool.  相似文献   

20.
The effect of four polyamines, putrescine, cadaverine, spermidine and spermine, on arbuscular mycorrhizal (AM) infection by Glomus intraradices was tested on Pisum sativum, cv. Frisson (nod+myc+) and two isogenic mutants of this cultivar, P56 (nod-myc+) and P2 (nod-myc-). Polyamines were applied at 0 and 5.10-4M as soil drenches. Endomycorrhizal infection parameters were measured 3 weeks after inoculation. Polyamine treatment significantly increased the frequency of mycorrhizal infection in the myc+ pea lines (cv. Frisson and P56) and the number of appressoria formed in the myc- line (P2). A positive correlation was found between polyamine chain length and their stimulation of fungal development. Results are discussed in relation to the possibility that polyamines may act as regulatory factors in plant-AM fungus interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号