首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

2.
Milk production is responsible for emitting a range of greenhouse gases (GHGs), mainly carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). In Life Cycle Assessments (LCA), the Global Warming Potential with a time horizon of 100 years (GWP100) is used almost universally to aggregate emissions of individual gases into so-called CO2-equivalent emissions that are used to calculate the overall carbon footprint of milk production. However, there is growing awareness that, depending on the purpose of the LCA, metrics other than GWP100 could be justified and some would give a very different weighting for the short-lived gas CH4 relative to the long-lived gases CO2 and N2O when calculating the carbon footprint. Pastoral dairy production systems at different levels of intensification differ in the balance of short- and long-lived GHGs associated with on- and off-farm emissions. Differences in the carbon footprint of different production systems could therefore be highly sensitive to the choice of GHG metric. Here we explore the extent to which alternative GHG metric choices would alter the carbon footprint of New Zealand milk production at different levels of intensification at national, regional and individual farm scales and compared to the carbon footprint of milk of selected European countries. We find that the ranking of different production systems and individual farms in terms of their carbon footprint is relatively robust against the choice of GHG metric, despite significant differences in their utilisation of pastures versus supplementary off-farm feed, fertiliser use and energy consumption at various stages of farm operations. However, there are instances where alternative GHG metric choices would fundamentally change the conclusions of LCA of different production systems, including whether a move towards higher or lower input systems would increase or decrease the average carbon footprint of milk production in New Zealand. Greater transparency about the implications of alternative GHG metrics for LCA, and the often inadvertent and implicit value judgements embedded in these metrics, would help ensure that policy decisions and consumer choices based on LCA indeed deliver the climate outcomes intended by end-users.  相似文献   

3.
Benthic nutrient fluxes in a eutrophic,polymictic lake   总被引:2,自引:0,他引:2  
Sediment release rates of soluble reactive phosphorus (SRP) and ammonium (NH4) were determined seasonally at three sites (water depth 7, 14 and 20 m) in Lake Rotorua using in situ benthic chamber incubations. Rates of release of SRP ranged from 2.2 to 85.6 mg P m−2 d−1 and were largely independent of dissolved oxygen (DO) concentration. Two phases of NH4 release were observed in the chamber incubations; high initial rates of up to 2,200 mg N m−2 d−1 in the first 12 h of deployment followed by lower rates of up to 270 mg N m−2 d−1 in the remaining 36 h of deployment. Releases of SRP and NH4 were highest in summer and at the deepest of the three sites. High organic matter supply rates to the sediments may be important for sustaining high rates of sediment nutrient release. A nutrient budget of Lake Rotorua indicates that internal nutrient sources derived from benthic fluxes are more important than external nutrient sources to the lake.  相似文献   

4.
Both field and laboratory studies were used to investigate the effects of temperature limitation and nutrient availability on seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a nearshore coral reef in the southern tip of Taiwan during 1999-2000. L. papillosa was a summer blooming alga abundant in August-November and G. coronopifolia was abundant year round except April-May. L. papillosa blooms in the summer were attributed to its preference for high temperatures and highly sensitivity to low temperatures. A wider temperature range and a significant stimulation of growth by high N inputs can explain the appearance of G. coronopifolia year round and also its maximum growth in November-March. Levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) in water column were extremely high, but the growth of these two rhodophytes still suffered nutrient limitation that the type and severity of nutrient limitation were variable over time and also between two species. The growth of L. papillosa was limited by P in the early growth stage (August-September) as indicated by decreased tissue P contents, increased C/P and N/P molar ratios and increased alkaline phosphatase activity (APA) and in the later growth stage, it was subjected to N-limitation, evidenced by decreased tissue N contents and C/P and N/P molar ratios and increased tissue P contents. The growth of G. coronopifolia was also P-limited as indicated by increased tissue N contents and concomitantly decreased tissue P contents, while marked drops in tissue P contents below the subsistence level in mid September and December 1999 reveal severe P limitation, which was supported by increased alkaline phosphatase activity. Higher critical nutrient contents and nutrient thresholds for maximum growth of G. coronopifolia suggest that G. coronopifolia faced more frequent nutrient limitation compared to L. papillosa. In conclusion, the results from these laboratory and field studies provide evidence that the seasonal abundance of L. papillosa and G. coronopifolia from southern Taiwan was determined by seasonal variations in seawater temperatures and nutrient concentrations as well as different physiological growth strategies. Seawater temperature and nutrient availability were important determinants of seasonal abundance of L. papillosa while the seasonal abundance of G. coronopifolia was influenced by nutrient availability.  相似文献   

5.
Frequent resuspension of sediments is recognized as an important process in large shallow lakes, impeding the recovery of eutrophic lakes. A large-scale project, including a wave barrier (3.3 km long) and a soft enclosure, was implemented to reduce wave energy and sediment resuspension in Lake Taihu, eastern China. The effects of the wave-reduction engineering on sediment resuspension and internal nutrient loading were investigated. Results showed that sediment resuspension rates as well as suspended solids (SS) in the areas protected by the wave barrier and the soft enclosure were significantly lower than in the unprotected areas. There was a positive relationship between total phosphorus (TP) and SS; thus internal loading of phosphorus was significantly reduced by the wave-reduction structure. High nutrient levels and phytoplankton biomass persisted during the experiment period, suggesting that additional measures, such as re-establishment of the macrophyte community, must be included to help restore the water quality in such a large, shallow and eutrophic lake.  相似文献   

6.
Lai HT  Lin JS  Chien YH 《Bioresource technology》2011,102(9):5425-5430
This study investigated the effects of light (visible light - 5800 lux, 24 h) or dark regime and aerobic or anaerobic condition on the decay of added oxolinic acid (OA) at 5, 10 and 20 mg L−1 in eel pond sediment. An asymptotic decaying exponential model Ct = Cmin + Co × exp (−k × t) was used to facilitate quantitative approach to OA transformation, where Ct is the concentration of OA after t days, Cmin the estimated level-off concentration of OA residue, Co the concentration of added OA and k the decaying coefficient. OA decayed faster under light (Cmin = 4.6 mg L−1) than under dark (Cmin = 7.8 mg L−1) and also decayed faster under aerobic (Cmin = 4.0 mg L−1) than under anaerobic condition (Cmin = 8.5 mg L−1). Cmin increased with Co. Sundrying and tilling eel pond bottom should be able to reduce OA residue significantly.  相似文献   

7.
Productivity of seagrasses can be controlled by physiological processes, as well as various biotic and abiotic factors that influence plant metabolism. Light, temperature, and inorganic nutrients affect biochemical processes of organisms, and are considered as major factors controlling seagrass growth. Minimum light requirements for seagrass growth vary among species due to unique physiological and morphological adaptations of each species, and within species due to photo-acclimation to local light regimes. Seagrasses can enhance light harvesting efficiencies through photo-acclimation during low light conditions, and thus plants growing near their depth limit may have higher photosynthetic efficiencies. Annual temperatures, which are highly predictable in aquatic systems, play an important role in controlling site specific seasonal seagrass growth. Furthermore, both thermal adaptation and thermal tolerance contribute greatly to seagrass global distributions. The optimal growth temperature for temperate species range between 11.5 °C and 26 °C, whereas the optimal growth temperature for tropical/subtropical species is between 23 °C and 32 °C. However, productivity in persistent seagrasses is likely controlled by nutrient availability, including both water column and sediment nutrients. It has been demonstrated that seagrasses can assimilate nutrients through both leaf and root tissues, often with equal uptake contributions from water column and sediment nutrients. Seagrasses use HCO3 inefficiently as a carbon source, thus photosynthesis is not always saturated with respect to DIC at natural seawater concentrations leading to carbon limitation for seagrass growth. Our understanding of growth dynamics in seagrasses, as it relates to main environmental factors such as light, temperature, and nutrient availability, is critical for effective conservation and management of seagrass habitats.  相似文献   

8.
Organic and nitrogen removal efficiencies in subsurface horizontal flow wetland system (HSF) with cattail (Typha augustifolia) treating young and partially stabilized solid waste leachate were investigated. Hydraulic loading rate (HLR) in the system was varied at 0.01, 0.028 and 0.056 m3/m2 d which is equivalent to hydraulic retention time (HRT) of 28, 10 and 5 d. Average BOD removals in the system were 98% and 71% when applied to young and partially stabilized leachate at HLR of 0.01 m3/m2 d. In term of total kjeldahl nitrogen, average removal efficiencies were 43% and 46%. High nitrogen in the stabilized leachate adversely affected the treatment performance and vegetation in the system. Nitrogen transforming bacteria were found varied along the treatment pathway. Methane emission rate was found to be highest at the inlet zone during young leachate treatment at 79–712 mg/m2 d whereas CO2 emission ranged from 26–3266 mg/m2 d. The emission of N2O was not detected.  相似文献   

9.
Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.  相似文献   

10.
Our study aim was to elucidate the effects of different species of submerged macrophytes and biomass levels on sediment resuspension. For this purpose experiments were conducted in four different enclosures (Potamogeton maackianus enclosure-PE, Vallisneria spinulosa enclosure-VE, manipulated enclosure-ME and aquaculture enclosure-AE). A sediment trap method was employed and the experiments were conducted from summer to winter in a shallow freshwater lake located in central China. A total of 813, 1277, 613 and 693 g DW m−2 of sediment was resuspended in VE, AE, ME and PE, respectively. Our results showed that P. maackianus was more effective than V. spinulosa in restraining sediment resuspension. Macrophytes reached their maximum effectiveness of reducing resuspension at a certain species-specific biomass threshold above which biomass effects on resuspension were negligible. The threshold biomass was estimated as 300 g m−2 for P. maackianus. Accordingly, within a lake management and aquaculture aspect, we conclude that as long as biomass does not fall below this threshold its consumption will not influence sediment resuspension. In the mid-lower reaches of the Yangtze River macrophyte coverage protects the lake sediment against adverse effects of monsoon wind; if the vegetation is eroded aquaculture sediment resuspension increases significantly.  相似文献   

11.
Abstract The incorporation of [3H](methyl)thymidine into DNA by the planktonic heterotropic bacteria of Little Crooked Lake (Noble Country, IN) was determined at different incubation temperatures. The highest rates of thymidine incorporation generally occurred at temperatures exceeding the in situ temperature of the sample. The optimal temperature for thymidine incorporation ranged from 1.0–3.4 times the in situ temperature. As the summer of 1983 progressed, the optimal temperatures for thymidine incorporation by epilimnetic samples and the in situ temperatures converged. This trend was reversed as fall overturn was approached.  相似文献   

12.
A short-core palaeolimnological investigation was undertaken with the aim ofacquiring knowledge of sediment deposition. Analyses of the lithological composition of sediments from the whole-lake basin were performed on the small eutrophic L. Linajärv (northern Estonia) and the concentrations of mineral and organic matter were measured on 647 sub-samples from 14 sediment cores. The accumulation rate of the sediment sequences was established and C/N ratios of organic matter in some cores were recorded. Results indicate that the water depth, basin slopes and distance to the shore have the most important impact on the physical sediment properties. It was shown that variations in the mineral matter concentrations were influenced by the changes in deposition conditions in the areas with steep slopes. The study indicated that more objective information about the sedimentation mechanisms is obtained using analysis of the concentration ratio of mineral and organic matter since it reduces the implied role of diagenetic compaction.  相似文献   

13.
This study employs closed-circuit respirometry to evaluate the effect of declining ambient oxygen partial pressure (PO2) and temperature on mass specific rates of oxygen uptake (O2) in Nautilus pompilius. At all temperatures investigated (11, 16, and 21 °C), O2 is relatively constant at high PO2 (oxyregulation) but declines sharply at low PO2 (oxyconformation). The critical PO2 below which oxyconformation begins (P c) is temperature dependent, higher at 21 °C (49 mmHg) than at 11 °C or 16 °C (21.7 mmHg and 30.8 mmHg respectively). In resting, post-absorptive animals, steady-state resting O2 increases significantly with temperature resulting in a Q10 value of approximately 2.5. The metabolic strategy of N. pompilius appears well suited to its lifestyle, providing sufficient metabolic scope for its extensive daily vertical migrations, but allowing for metabolic suppression when PO2 falls too low. The combination of low temperatures and low PO2 may suppress metabolic rate 16-fold (assuming negligible contributions from anaerobic metabolism and internal O2 stores), enhancing hypoxia tolerance. Accepted: 20 January 2000  相似文献   

14.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   

15.
Life cycle assessment of biofuels: Energy and greenhouse gas balances   总被引:1,自引:0,他引:1  
The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.  相似文献   

16.
Many peatlands were affected by drainage in the past, and restoration of their water regime aims to bring back their original functions. The purpose of our study was to simulate re-wetting of soils of different types of drained peatlands (bogs and minerotrophic mires, located in the Sumava Mountains, Czech Republic) under laboratory conditions (incubation for 15 weeks) and to assess possible risks of peatland water regime restoration - especially nutrient leaching and the potentials for CO2 and CH4 production. After re-wetting of soils sampled from drained peatlands (simulated by anaerobic incubation) (i) phosphorus concentration (SRP) did not change in any soil, (ii) concentration of ammonium and dissolved organic nitrogen (DON) increased, but only in a drained fen, (iii) DOC increased significantly in the drained fen and degraded drained bog, (iv) CO2 production decreased, (v) CH4 production and the number of methanogens increased in all soils, and (vi) archaeal methanogenic community composition was also affected by re-wetting; it differed significantly between drained and pristine fens, whereas it was more similar between drained and pristine bogs. Overall, the soils from fens reacted more dynamically to re-wetting than the bogs, and therefore, some nutrients (especially nitrogen) and DOC leaching may be expected from drained fens after their water regime restoration. However, if compared to their state before restoration, ammonium and phosphorus leaching should not increase and leaching of nitrates and DON should even decrease after restoration, especially during the vegetation season. Further, CO2 production in soils of fens and bogs should decrease after their water regime restoration, whereas CH4 production in soils should increase. However, we cannot derive any clear conclusions about CH4 emissions from the ecosystems based on this study, as they depend strongly on environmental factors and on the actual activity of methanotrophs in situ.  相似文献   

17.
Fertilized rice paddy soils emit methane while flooded, emit nitrous oxide during flooding and draining transitions, and can be a source or sink of carbon dioxide. Changing water management of rice paddies can affect net emissions of all three of these greenhouse gases. We used denitrification–decomposition (DNDC), a process‐based biogeochemistry model, to evaluate the annual emissions of CH4, N2O, and CO2 for continuously flooded, single‐, double‐, and triple‐cropped rice (three baseline scenarios), and in further simulations, the change in emissions with changing water management to midseason draining of the paddies, and to alternating crops of midseason drained rice and upland crops (two alternatives for each baseline scenario). We used a set of first‐order atmospheric models to track the atmospheric burden of each gas over 500 years. We evaluated the dynamics of the radiative forcing due to the changes in emissions of CH4, N2O, and CO2 (alternative minus baseline), and compared these with standard calculations of CO2‐equivalent emissions using global warming potentials (GWPs). All alternative scenarios had lower CH4 emissions and higher N2O emissions than their corresponding baseline cases, and all but one sequestered carbon in the soil more slowly. Because of differences in emissions, in radiative forcing per molecule, and in atmospheric time constants (lifetimes), the relative radiative impacts of CH4, N2O, and CO2 varied over the 500‐year simulations. In three of the six cases, the initial change in radiative forcing was dominated by reduced CH4 emissions (i.e. a cooling for the first few decades); in five of the six cases, the long‐term radiative forcing was dominated by increased N2O emissions (i.e. a warming over several centuries). The overall complexity of the radiative forcing response to changing water management could not easily be captured with conventional GWP calculations.  相似文献   

18.
We tested the hypothesis that excretion of nutrients by zooplanktoncan reduce the severity of nutrient limitation of phytoplankton,and determine whether the phytoplankton community is limitedby nitrogen or phosphorus. In situ experiments were conductedin eutrophic Lake Mendota (Wisconsin, USA) during the summerof 1988, where phytoplankton were limited by N and P, but periodsof nutrient limitation were transitory Increased zooplanktonbiomass and the consequent increased excretion of nutrientsby zooplankton reduced P limitation (as measured by specificalkaline phosphatase activity) in all experiments Excretionof nutrients also reduced N limitation (as measured by ammoniumenhancement response) in one of three experiments. In additionalexperiments in the more highly eutrophic Lake Wingra, excretionof nutrients by zooplankton reduced both N and P limitationThese results support the hypothesis that zooplankton have potentiallyimportant indirect effects on phytoplankton communities throughrecycling of nutrients  相似文献   

19.
Increasing temperatures due to climate change were found to influence abundance and timing of species in numerous ways. Whereas many studies have investigated climate-induced effects on the phenology and abundance of single species, less is known about climate-driven shifts in the diversity and composition of entire communities. Analyses of long-term data sets provide the potential to reveal such relationships. We analysed time series of entire communities of macrozoobenthos in lakes and streams in Northern Europe. There were no direct linear effects of temperature and climate indices (North Atlantic Oscillation index) on species composition and diversity, but using multivariate statistics we were able to show that trends in average temperature have already had profound impacts on species composition in lakes. These significant temperature signals on species composition were evident even though we analysed comparatively short time periods of 10–15 years. Future climate shifts may thus induce strong variance in community composition. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Priority programme of the German Research Foundation—contribution 6.  相似文献   

20.
The effects of low nitrogen-phosphorus ratios on microalgae from a large eutrophic freshwater lake in the Philippines were investigated. Natural microalgal populations from Laguna de Bay, the largest lake in the Philippines, were cultured using three different nitrogen-phosphorus weight ratios (2N:1P; 6N:1P and 12N:1P) at two phosphorus concentrations (0.25 and 0.5 mg l–1) in each case. The growth and genera composition of the cultures under the different treatments were followed for a 12-week period. Community level responses were assessed based on species richness (s), Shannon-Wiener Index (H), Simpson Index () and Evenness (J). Among the different microalgal groups, only the chlorophytes showed a significantly higher density in response to the 12N:1P treatment at the higher P concentration, indicating that the nutrient ratio had a significant interaction with the nutrient levels used in the experiments. The genera found in the different treatments were generally similar; however, the degree of dominance of some varied with treatment during the experiment. The succession of dominant genera also differed among the N:P treatments. The diatoms like Fragilaria, Aulacoseira (= Melosira) and Nitzschia dominated the lowest N:P. On the other hand, chlorophytes (Kirchneriella and Scenedesmus) dominated the highest N:P treatment, particularly from the second to the seventh week of the experiments with the diatoms becoming co-dominant only towards the eighth week until the end of the experimental. The 6N:1P treatment showed a mixed dominance between the diatoms and the chlorophyte genera. The various indices of diversity indicate significantly lower diversity only in the 12N:1P at 0.5 mg l–1 P and not in 12N:1P at 0.25 mg l–1 P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号