首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,129(5):1329-1344
Keratin 5 and keratin 14 have been touted as the hallmarks of the basal keratin networks of all stratified squamous epithelia. Absence of K14 gives rise to epidermolysis bullosa simplex, a human blistering skin disorder involving cytolysis in the basal layer of epidermis. To address the puzzling question of why this disease is primarily manifested in skin rather than other stratified squamous epithelia, we ablated the K14 gene in mice and examined various tissues expressing this gene. We show that a key factor is the presence of another keratin, K15, which was hitherto unappreciated as a basal cell component. We show that the levels of K15 relative to K14 vary dramatically among stratified squamous epithelial tissues, and with neonatal development. In the absence of K14, K15 makes a bona fide, but ultrastructurally distinct, keratin filament network with K5. In the epidermis of neonatal mutant mice, K15 levels are low and do not compensate for the loss of K14. In contrast, the esophagus is unaffected in the neonatal mutant mice, but does appear to be fragile in the adult. Parallel to this phenomenon is that esophageal K14 is expressed at extremely low levels in the neonate, but rises in postnatal development. Finally, despite previous conclusions that the formation of suprabasal keratin filaments might depend upon K5/K14, we find that a wide variety of suprabasal networks composed of different keratins can form in the absence of K14 in the basal layer.  相似文献   

2.
Keratins 5 and 14 polymerize to form the intermediate filament network in the progenitor basal cells of many stratified epithelia including epidermis, where it provides crucial mechanical support. Inherited mutations in K5 or K14 result in epidermolysis bullosa simplex (EBS), a skin-fragility disorder. The impact that such mutations exert on the intrinsic mechanical properties of K5/K14 filaments is unknown. Here we show, by using differential interference contrast microscopy, that a 'hot-spot' mutation in K14 greatly reduces the ability of reconstituted mutant filaments to bundle under crosslinking conditions. Rheological assays measure similar small-deformation mechanical responses for crosslinked solutions of wild-type and mutant keratins. The mutation, however, markedly reduces the resilience of crosslinked networks against large deformations. Single-particle tracking, which probes the local organization of filament networks, shows that the mutant polymer exhibits highly heterogeneous structures compared to those of wild-type filaments. Our results indicate that the fragility of epithelial cells expressing mutant keratin may result from an impaired ability of keratin polymers to be crosslinked into a functional network.  相似文献   

3.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

4.
5.
Keratins are a family of structurally related proteins that form the intermediate filament cytoskeleton in epithelial cells. Mutations in K1 and K5 result in the autosomal dominant disorders epidermolytic hyperkeratosis/bullous congenital ichthyosiform erythroderma and epidermolysis bullosa simplex, respectively. Most disease-associated mutations are within exons encoding protein domains involved in keratin filament assembly. However, some mutations occur outside the mutation hot-spots and may perturb intermolecular interactions between keratins and other proteins, usually with milder clinical consequences. To screen the entire keratin 1 and keratin 5 genes we have characterized their intron-exon organization. The keratin 1 gene comprises 9 exons spanning approximately 5.6 kb on 12q, and the keratin 5 gene comprises 9 exons spanning approximately 6.1 kb on 12q. We have also developed a comprehensive PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

6.
Dominant keratin mutations cause epidermolysis bullosa simplex by transforming keratin (K) filaments into aggregates. As a first step toward understanding the properties of mutant keratins in vivo, we stably transfected epithelial cells with an enhanced yellow fluorescent protein-tagged K14R125C mutant. K14R125C became localized as aggregates in the cell periphery and incorporated into perinuclear keratin filaments. Unexpectedly, keratin aggregates were in dynamic equilibrium with soluble subunits at a half-life time of <15 min, whereas filaments were extremely static. Therefore, this dominant-negative mutation acts by altering cytoskeletal dynamics and solubility. Unlike previously postulated, the dominance of mutations is limited and strictly depends on the ratio of mutant to wild-type protein. In support, K14R125C-specific RNA interference experiments resulted in a rapid disintegration of aggregates and restored normal filaments. Most importantly, live cell inhibitor studies revealed that the granules are transported from the cell periphery inwards in an actin-, but not microtubule-based manner. The peripheral granule zone may define a region in which keratin precursors are incorporated into existing filaments. Collectively, our data have uncovered the transient nature of keratin aggregates in cells and offer a rationale for the treatment of epidermolysis bullosa simplex by using short interfering RNAs.  相似文献   

7.
Type I keratins K18 and K19 undergo caspase-mediated degradation during apoptosis. Two known K18 caspase cleavage sites are aspartates in the consensus sequences VEVDA and DALDS, located within the rod domain and tail domain, respectively. Several K14 (another type I keratin) mutations within the caspase cleavage motif have been described in patients with epidermolysis bullosa simplex. Here we use extensive mutational analysis to show that K19 and K14 are caspase substrates and that the ability to undergo caspase-mediated digestion of K18, K19, or K14 is highly dependent on the location and nature of the mutation within the caspase cleavage motif. Caspase cleavage of K14 occurs at the aspartate of VEMDA, a consensus sequence found in type I keratins K12-17 with similar but not identical sequences in K18 and K19. For K18, apoptosis-induced cleavage occurs sequentially, first at (393)DALD and then at (234)VEVD. Hyperphosphorylation of K18 protects from caspase-3 in vitro digestion at (234)VEVD but not at (393)DALD. Hence, keratins K12-17 are likely caspase substrates during apoptosis. Keratin hyperphosphorylation, which occurs early in apoptosis, protects from caspase-mediated K18 digestion in a cleavage site-specific manner. Mutations in epidermolysis bullosa simplex patients could interfere with K14 degradation during apoptosis, depending on their location.  相似文献   

8.
Keratin 5 is the major type II keratin of the basal cells of epidermis and of other stratified epithelia. With its type I partner, keratin 14, it constitutes a major fraction of the cytoskeleton of the basal cells. Because the inheritance of epidermolysis bullosa simplex, a disease of epidermal basal cell fragility, was mapped in one family to chromosome 12q close to D12S14, we undertook to localize the gene for keratin 5. Polymerase chain reaction analysis of somatic cell hybrids mapped the keratin 5 gene to chromosome 12, and multicolor fluorescence in situ hybridization localized it to 12q very near D12S14. This sublocalization exemplifies the utility of in situ physical localization in assessing the candidacy of genes thought to underlie inherited disorders.  相似文献   

9.
Inherited mutations in the intermediate filament (IF) proteins keratin 5 (K5) or keratin 14 (K14) cause epidermolysis bullosa simplex (EBS), in which basal layer keratinocytes rupture upon trauma to the epidermis. Most mutations are missense alleles affecting amino acids located in the central alpha-helical rod domain of K5 and K14. Here, we study the properties of an unusual EBS-causing mutation in which a nucleotide deletion (1649delG) alters the last 41 amino acids and adds 35 residues to the C terminus of K5. Relative to wild type, filaments coassembled in vitro from purified K5-1649delG and K14 proteins are shorter and exhibit weak viscoelastic properties when placed under strain. Loss of the C-terminal 41 residues contributes to these alterations. When transfected in cultured epithelial cells, K5-1649delG incorporates into preexisting keratin IFs and also forms multiple small aggregates that often colocalize with hsp70 in the cytoplasm. Aggregation is purely a function of the K5-1649delG tail domain; in contrast, the cloned 109 residue-long tail domain from wild type K5 is distributed throughout the cytoplasm and colocalizes partly with keratin IFs. These data provide a mechanistic basis for the cell fragility seen in individuals bearing the K5-1649delG allele, and point to the role of the C-terminal 41 residues in determining K5's assembly properties.  相似文献   

10.
P A Coulombe  M E Hutton  A Letai  A Hebert  A S Paller  E Fuchs 《Cell》1991,66(6):1301-1311
Previously we demonstrated that transgenic mice expressing mutant basal epidermal keratin genes exhibited a phenotype resembling a group of autosomal dominant human skin disorders known as epidermolysis bullosa simplex (EBS). EBS diseases affect approximately 1: 50,000 and are of unknown etiology, although all subtypes exhibit blistering arising from basal cell cytolysis. We now demonstrate that two patients with spontaneous cases of Dowling-Meara EBS have point mutations in a critical region in one (K14) of two basal keratin genes. To demonstrate function, we engineered one of these point mutations in a cloned human K14 cDNA, and showed that a K14 with an Arg-125----Cys mutation disrupted keratin network formation in transfected keratinocytes and perturbed filament assembly in vitro. Since we had previously shown that keratin network perturbation is an essential component of EBS diseases, these data suggest that the basis for the phenotype in this patient resides in this point mutation.  相似文献   

11.
To explore the relationship between keratin gene mutations and genetic disease, we made transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia. These mice exhibited abnormalities in epidermal architecture and often died prematurely. Blistering occurred easily, and basal cell cytolysis was evidence at the light and electron microscopy levels. Keratin filament formation was markedly altered, with keratin aggregates in basal cells. In contrast, terminally differentiating cells made keratin filaments and formed a stratum corneum. Recovery of outer layer cells was attributed to down-regulation of mutant keratin expression and concomitant induction of differentiation-specific keratins as cells terminally differentiate, and the fact that these cells arose from basal cells developing at a time when keratin expression was relatively low. Collectively, the pathobiology and biochemistry of the transgenic mice and their cultured keratinocytes bore a resemblance to a group of genetic disorders known as epidermolysis bullosa simplex.  相似文献   

12.
The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10(-/-) mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10(-/-) mice suggests that there is a considerable redundancy in the keratin gene family.  相似文献   

13.
We have investigated keratin interactions in vivo by sequentially extracting water-insoluble proteins from normal human epidermis with increasing concentrations of urea (2, 4, 6, and 9.5 M) and examining each extract by one- and two-dimensional gel electrophoresis, immunoblot analysis using monoclonal anti-keratin antibodies, and EM. The viable layers of normal human epidermis contain keratins K1, K2, K5, K10/11, K14, and K15, which are sequentially expressed during the course of epidermal differentiation. Only keratins K5, K14, and K15, which are synthesized by epidermal basal cells, were solubilized in 2 M urea. Extraction of keratins K1, K2, and K10/11, which are expressed only in differentiating suprabasal cells, required 4-6 M urea. Negative staining of the 2-M urea extract revealed predominantly keratin filament subunits, whereas abundant intermediate-sized filaments were observed in the 4-urea and 6-M urea extracts. These results indicate that in normal human epidermis, keratins K5, K14, and K15 are more soluble than the differentiation-specific keratins K1, K2, and K10/11. This finding suggests that native keratin filaments of different polypeptide composition have differing properties, despite their similar morphology. Furthermore, the observation of stable filaments in 4 and 6 M urea suggests that epidermal keratins K1, K2, and K10/11, which ultimately form the bulk of the protective, nonviable stratum corneum, may comprise filaments that are unusually resistant to denaturation.  相似文献   

14.
15.
Y Kitajima  Y Jokura  H Yaoita 《Human cell》1991,4(2):123-130
The cytoskeletons possibly related to pathogenesis in skin disease may be limited to keratin intermediate filaments (KIF) in epidermal keratinocytes. Keratins are divided into two subclasses; 11 acidic (type I) keratins and 8 basic (type II) keratins. Combination of equimolar amounts of type I and type II can form KIF. KIFs in human epidermal basal cells consist of a pair of type I and type II keratins specifically synthesized in the basal cells, and those in spinous cells contain two pairs of keratin; a pair of basal cell keratin and another pair of keratin specific for suprabasal cells. In the first section, molecular biology and differentiation of keratins are reviewed. In the second section, epidermolysis bullosa simplex (EBS) was introduced from the view point of abnormal organization of KIFs. In the epidermis of EBS, clefts are induced in the basal cells by minor trauma or frictions consequently to produce bullae. Electron microscopy reveals small spherical aggregations of tonofilaments (KIFs) in the basal cells. In biopsies, these KIF aggregations might be caused by artifacts during procedures for biopsies, so that, in order to avoid these artifacts, we studied the KIF organization in cultured keratinocytes from a patient by immunofluorescence using anti-keratin antibodies and electron microscopy. Anti-keratin antibodies revealed a formation of small droplet-like aggregations of KIFs in many cultured cells adhering to the culture bottles, which were also suggested by electron microscopy. From these observations, it is suggested that the abnormal organization (droplets) of KIFs might be one of intrinsic factors for the pathogenesis of EBS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To explore the relationship between abnormal keratin molecules, 10-nm intermediate filament (IF) organization, and epidermal fragility and blistering, we sought to determine the functional consequences of homozygosity for a dominant keratin defect. We describe a family with an autosomal dominant skin-blistering disorder, epidermolysis bullosa simplex, Koebner subtype (EBS-K), that has a novel point mutation, occurring in the keratin 5 gene (KRT5), that predicts the substitution of an evolutionarily conserved lysine by an asparagine residue (K173N). Unlike previous heterozygous mutations located within the initial segment of domain 1A of keratin molecules, K173N heterozygosity did not result in severe disease or clumping of keratin filaments. One family member was found to be homozygous for the K173N allele, having inherited it from each of her affected first-cousin parents. Despite a lack of normal keratin 5 molecules, and an effective doubling of abnormal molecules, available for heterodimerization with keratin 14 during IF formation, there were no significant differences in the clinical severity or the ultrastructural organization of the keratin IF cytoskeleton of the homozygous individual. These data demonstrate that the K173N mutation behaves as a fully dominant allele and indicate that a limited number of abnormal keratin molecules are sufficient to impair cytoskeletal function and elicit epidermal fragility and blistering.  相似文献   

17.
《The Journal of cell biology》1993,120(5):1251-1261
Keratins 1 (K1) and 10 (K10) are the predominant cytoskeletal intermediate filaments of epidermal cells during transition from the proliferative to the terminal differentiation stage. In situ, formation of the K1/K10 intermediate filament network occurs in the cytoplasm of cells with a preexisting cytoskeleton composed of keratins 5 and 14. To define cytoskeletal interactions permissive for formation of the K1/K10 filamentous network, active copies of mouse K1 and K10 genes were introduced into fibroblasts (NIH 3T3) which do not normally express these proteins. Transient and stable transfectants, as well as heterokaryons produced by fusions with epithelial cells, were evaluated for expression of K1 and K10 proteins and filament formation using specific antibodies. In contrast to keratin pairs K5/K14 and K8/K18, the K1/K10 pair failed to form an extensive keratin filament network on its own, although small isolated dense K1/K10 filament bundles were observed throughout the cytoplasm by EM. K1 and K10 filaments integrated only into the preexisting K5/K14 network upon fusion of the NIH 3T3 (K1/K10) cells with epithelial cells expressing endogenous K5/K14 or with NIH 3T3 cells which were transfected with active copies of the K5 and K14 genes. When combinations of active recombinant gene constructs for keratins 1, 5, 10, and 14 were tested in transient NIH 3T3 transfections, the most intact cytokeratin network observed by immunofluorescence was formed by the K5/K14 pair. The K1/K14 pair was capable of forming a cytoskeletal network, but the network was poorly developed, and usually perinuclear. Transfection of K10 in combination with K5 or K1 resulted in cytoplasmic agglomerates, but not a cytoskeleton. These results suggest that the formation of the suprabasal cytoskeleton in epidermis is dependent on the preexisting basal cell intermediate filament network. Furthermore, restrictions on filament formation appear to be more stringent for K10 than for K1.  相似文献   

18.
Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.  相似文献   

19.
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.  相似文献   

20.
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号