共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Telleria J Lafay B Virreira M Barnabé C Tibayrenc M Svoboda M 《Experimental parasitology》2006,114(4):279-288
The comparisons of 170 sequences of kinetoplast DNA minicircle hypervariable region obtained from 19 stocks of Trypanosoma cruzi and 2 stocks of Trypanosoma cruzi marenkellei showed that only 56% exhibited a significant homology one with other sequences. These sequences could be grouped into homology classes showing no significant sequence similarity with any other homology group. The 44% remaining sequences thus corresponded to unique sequences in our data set. In the DTU I ("Discrete Typing Units") 51% of the sequences were unique. In contrast, in the DTU IId, 87.5% of sequences were distributed into three classes. The results obtained for T. cruzi marinkellei, showed that all sequences were unique, without any similarity between them and T. cruzi sequences. Analysis of palindromes in all sequence sets show high frequency of the EcoRI site. Analysis of repetitive sequences suggested a common ancestral origin of the kDNA. The editing mechanism that occurs in kinetoplastidae is discussed. 相似文献
3.
4.
Adriana Botero Irit Kapeller Crystal Cooper Peta L. Clode Joseph Shlomai R.C Andrew Thompson 《International journal for parasitology》2018,48(9-10):691-700
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes. 相似文献
5.
The cleavage of the kDNA minicircles of by the restriction endonucleases I, II, I, I and II revealed that this kDNA is homogeneous in base sequence. This is in contrast with the kDNA of minicircles of the other species of trypanosomes so far studied. The 10 cleavage sites, obtained with these endonucleases, were ordered and a restriction cleavage map of the minicircles was thus drawn. 相似文献
6.
Canrep is a heterogeneous, tandemly repeated, 176 bp nucleotide sequence that contains a single Hind III site and is present in high copy numbers in the genomes of many Brassica species. Complete clusters of repeats of this DNA were cloned from the nuclear DNA of Brassica juncea. Restriction-fragment dimers and higher multimers of the 176 bp sequence have arisen by mutations within the Hind III recognition sequence. Adjacent repeats from within the same cluster usually have different nucleotide sequences with features indicating that diversity is generated by a mechanism that causes site-specific base substitutions. While most of the units of canrep DNA are clustered in long arrays of tandem repeats, some are dispersed throughout the genome as isolated copies or in small clusters. Regardless of the size of the arrays, each cluster begins and ends with a variable-length, truncated repeat and is flanked by inverted copies of the sequence 5-ATCTCAT3-,which is not part of the basic sequence of the canrep family of DNAs. Furthermore, some clusters are located close to nucleotide sequences related to those of known plant transposons. Thus, canrep elements may be dispersed by transposition. There are two distinct subfamilies of canrep sequences in B. juncea, and one of these is closely related to one of the two subfamilies of this type of DNA from B. napus, indicating that it originated from B. campestris, the common diploid ancestor of both amphidiploid species. Neither the repetitive DNA nor nucleotide sequences flanking canrep clusters are transcribed in seedlings, suggesting that even small arrays of repeats are located in heterochromatic regions and might be involved in chromatin condensation and/or chromosome segregation. 相似文献
7.
Hernandez A Panigrahi A Cifuentes-Rojas C Sacharidou A Stuart K Cruz-Reyes J 《Journal of molecular biology》2008,381(1):35-48
U-insertion/deletion RNA editing in the single mitochondrion of kinetoplastids, an ancient lineage of eukaryotes, is a unique mRNA maturation process needed for translation. Multisubunit editing complexes recognize many pre-edited mRNA sites and modify them via cycles of three catalytic steps: guide RNA (gRNA)-directed cleavage, insertion or deletion of uridylates at the 3′-terminus of the upstream cleaved piece, and ligation of the two mRNA pieces. While catalytic and many structural protein subunits of these complexes have been identified, the mechanisms and basic determinants of substrate recognition are still poorly understood. This study defined relatively simple single- and double-stranded determinants for association and gRNA-directed cleavage. To this end, we used an electrophoretic mobility shift assay to directly score the association of purified editing complexes with RNA ligands, in parallel with UV photocrosslinking and functional studies. The cleaved strand required a minimal 5′ overhang of 12 nt and an ∼ 15-bp duplex with gRNA to direct the cleavage site. A second protruding element in either the cleaved or the guide strand was required unless longer duplexes were used. Importantly, the single-stranded RNA requirement for association can be upstream or downstream of the duplex, and the binding and cleavage activities of purified editing complexes could be uncoupled. The current observations together with our previous reports in the context of purified native editing complexes show that the determinants for association, cleavage and full-round editing gradually increase in complexity as these stages progress. The native complexes in these studies contained most, if not all, known core subunits in addition to components of the MRP complex. Finally, we found that the endonuclease KREN1 in purified complexes photocrosslinks with a targeted editing site. A model is proposed whereby one or more RNase III-type endonucleases mediate the initial binding and scrutiny of potential ligands and subsequent catalytic selectivity triggers either insertion or deletion editing enzymes. 相似文献
8.
Synthesis and processing of kinetoplast DNA minicircles in Trypanosoma equiperdum. 总被引:4,自引:2,他引:2 下载免费PDF全文
Kinetoplast DNA, the mitochondrial DNA in trypanosomes, is a giant network containing topologically interlocked minicircles. Replication occurs on free minicircles that have been detached from the network. In this paper, we report studies on the synthesis and processing of the minicircle L and H strands. Analysis of free minicircles from Trypanosoma equiperdum by two-dimensional agarose gel electrophoresis indicated that elongating L strands are present on theta structures. Hybridization studies indicated that L-strand elongation is continuous and unidirectional, starting near nucleotide 805 and proceeding around the entire minicircle. The theta structures segregate into monomeric progeny minicircles, and those with a newly synthesized L strand have a 8-nucleotide gap between nucleotides 805 and 814 (J. M. Ntambi, T. A. Shapiro, K. A. Ryan, and P. T. Englund, J. Biol. Chem. 261:11890-11895, 1986). These molecules are reattached to the network, where repair of the gap takes place. Of the molecules labeled during a 10-min pulse with [3H]thymidine, gap filling occurred on half within about 15 min and on virtually all by 60 min; however, there was no detectable covalent closure of the newly synthesized L strand by 60 min. 相似文献
9.
The kinetoplast DNA of Trypanosoma brucei consists of 104 minicircles (0.3 μm) and 102 maxicircles (6 μm) held together by catenation in a complex network. In electron micrographs of kinetoplast DNA spread in a protein monolayer we have identified four types of network with the appearance of different stages in network replication and segregation. We show that each network type has characteristic properties with respect to shape, size, number, and location of maxicircle loops and nicked or covalently closed character of minicircles and maxicircles. We propose a detailed model for network segregation that involves a gradual elongation of the network, followed by network cleavage. During this process the basic network structure remains unaltered, implying a complicated mechanism of minicircle rearrangements. 相似文献
10.
Beiyu Liu Gokben Yildirir Jianyang Wang G?khan Tolun Jack D. Griffith Paul T. Englund 《The Journal of biological chemistry》2010,285(10):7056-7066
Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny. 相似文献
11.
Salivarian trypanosomes are the causative agents of several diseases of major social and economic impact. The most infamous parasites of this group are the African subspecies of the Trypanosoma brucei group, which cause sleeping sickness in humans and nagana in cattle. In terms of geographical distribution, however, Trypanosoma equiperdum and Trypanosoma evansi have been far more successful, causing disease in livestock in Africa, Asia, and South America. In these latter forms the mitochondrial DNA network, the kinetoplast, is altered or even completely lost. These natural dyskinetoplastic forms can be mimicked in bloodstream form T. brucei by inducing the loss of kinetoplast DNA (kDNA) with intercalating dyes. Dyskinetoplastic T. brucei are incapable of completing their usual developmental cycle in the insect vector, due to their inability to perform oxidative phosphorylation. Nevertheless, they are usually as virulent for their mammalian hosts as parasites with intact kDNA, thus questioning the therapeutic value of attempts to target mitochondrial gene expression with specific drugs. Recent experiments, however, have challenged this view. This review summarises the data available on dyskinetoplasty in trypanosomes and revisits the roles the mitochondrion and its genome play during the life cycle of T. brucei. 相似文献
12.
13.
Patrick Wincker Marie-France Bosseno Constança Britto Nina Yaksic Maria Angélica Cardoso Carlos Médicis Morel Simone Frédérique Brenière 《FEMS microbiology letters》1994,124(3):419-423
Abstract The detection of Trypanosoma cruzi kinetoplast DNA by polymerase chain reaction (PCR) amplification is a potentially powerful tool for the parasitological diagnosis of Chagas' disease. We have applied this technique in a field situation in Bolivia, where 45 children from a primary school were subjected to serological testing, buffy coat analysis and PCR diagnosis. 26 of the 28 serology-positive individuals were also positive by PCR. In addition, two serology-negative children gave a positive result by PCR, including one who was positive in the buffy coat test. These results suggest that PCR detection of T. cruzi DNA in blood can be a very useful complement to serology in Chagas' disease diagnosis in Bolivia. 相似文献
14.
We describe how the stability properties of DNA minicircles can be directly read from plots of various biologically intuitive quantities along families of equilibrium configurations. Our conclusions follow from extensions of the mathematical theory of distinguished bifurcation diagrams that are applied within the specific context of an elastic rod model of minicircles. Families of equilibria arise as a twisting angle alpha is varied. This angle is intimately related to the continuously varying linking number Lk for nicked DNA configurations that is defined as the sum of Twist and Writhe. We present several examples of such distinguished bifurcation diagrams involving plots of the energy E, linking number Lk, and a twist moment m3, along families of cyclized equilibria of both intrinsically straight and intrinsically curved DNA fragments. 相似文献
15.
Maize nuclear DNA sequences capable of promoting the autonomous replication of plasmids in yeast were isolated by ligating Eco RI-digested fragments into yeast vectors unable to replicate autonomously. Three such autonomously replicating sequences (ARS), representing two families of highly repeated sequences within the maize genome, were isolated and characterized. Each repetitive family shows hybridization patterns on a Southern blot characteristic of a dispersed sequence. Unlike most repetitive sequences in maize, both ARS families have a constant copy number and characteristic genomic hybridization pattern in the inbred lines examined. Larger genome clones with sequence homology to the ARS-containing elements were selected from a lambda library of maize genomic DNA. There was typically only one copy of an ARS-homologous sequence on each 12–15 kb genomic fragment. 相似文献
16.
17.
Liu B Molina H Kalume D Pandey A Griffith JD Englund PT 《Molecular and cellular biology》2006,26(14):5382-5393
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles. 相似文献
18.
The configuration of DNA replication sites within the Trypanosoma brucei kinetoplast 总被引:2,自引:1,他引:2 下载免费PDF全文
《The Journal of cell biology》1994,126(3):641-648
The kinetoplast is a concatenated network of circular DNA molecules found in the mitochondrion of many trypanosomes. This mass of DNA is replicated in a discrete "S" phase in the cell cycle. We have tracked the incorporation of the thymidine analogue 5-bromodeoxyuridine into newly replicated DNA by immunofluorescence and novel immunogold labeling procedures. This has allowed the detection of particular sites of replicated DNA in the replicating and segregating kinetoplast. These studies provide a new method for observing kinetoplast DNA (kDNA) replication patterns at high resolution. The techniques reveal that initially the pattern of replicated DNA is antipodal and can be detected both on isolated complexes and in replicating kDNA in vivo. In Trypanosoma brucei the opposing edges of replicating kDNA never extend around the complete circumference of the network, as seen in other kinetoplastids. Furthermore, crescent-shaped labeling patterns are formed which give way to labeling of most of the replicating kDNA except the characteristic midzone. The configuration of these sites of replicated DNA molecules is different to previous studies on organisms such as Crithidia fasciculata, suggesting differences in the timing of replication of mini and maxicircles and/or organization of the replicative apparatus in the kinetoplast of the African trypanosome. 相似文献
19.
Approximately 52% of the nuclear genome of great millet(Sorghum vulgare) consists of repetitive DNA which can be grouped into very fast, fast and slow components. The reiteration frequencies of
the fast and slow reassociating components are {dy7000} and 92 respectively. Approximately 90% of the genome consists of repeated
sequences interspersed amongst themselves and with single copy sequences. The interspersed repeat sequences are of three sizesviz. > 1·5 kilobase pairs, 0·5–1·0 kilobase pairs and 0·15–0·30 kilobase pairs while the size of the single copy sequences is 3·0
kilobase pairs. Hence the genome organization of great millet is essentially of a mixed type
NCL communication No. 3527. 相似文献
20.
Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei 总被引:28,自引:5,他引:28 下载免费PDF全文
We have used restriction endonucleases PstI, EcoRI, HapII, HhaI, and S1 nuclease to demonstrate the presence of a large complex component, the maxi-circle, in addition to the major mini-circle component in kinetoplast DNA (kDNA) networks of Trypanosoma brucei (East African Trypanosomiasis Research Organization [EATRO] 427). Endonuclease PstI and S1 nuclease cut the maxi-circle at a single site, allowing its isolation in a linear form with a mol wt of 12.2 x 10(6), determined by electron microscopy. The other enzymes give multiple maxi-circle fragments, whose added mol wt is 12-13 x 10(6), determined by gel electrophoresis. The maxi-circle in another T. brucei isolate (EATRO 1125) yields similar fragments but appears to contain a deletion of about 0.7 x 10(6) daltons. Electron microscopy of kDNA shows the presence of DNA considerably longer than the mini-circle contour length (0.3 micron) either in the network or as loops extending from the edge. This long DNA never exceeds the maxi-circle length (6.3 microns) and is completely removed by digestion with endonuclease PstI. 5-10% of the networks are doublets with up to 40 loops of DNA clustered between the two halves of the mini-circle network and probably represent a division stage of the kDNA. Digestion with PstI selectively removes these loops without markedly altering the mini-circle network. We conclude that the long DNA in both single and double networks represents maxi-circles and that long tandemly repeated oligomers of mini-circles are (virtually) absent. kDNA from Trypanosoma equiperdum, a trypanosome species incapable of synthesizing a fully functional mitochondrion, contains single and double networks of dimensions similar to those from T. brucei but without any DNA longer than mini-circle contour length. We conclude that the maxi-circle of trypanosomes is the genetic equivalent of the mitochondrial DNA (mtDNA) of other organisms. 相似文献