首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of rabbit muscle phosphofructokinase was investigated by measurement of fluxes, isotope trapping and steady-state velocities at pH8 in triethanolamine/HCl buffer with 4 mM free Mg2+. Most observations were made at I0.2. The ratio Flux of fructose 1,6-bisphosphate----fructose 6-phosphate/Flux of fructose 1,6-bisphosphate----ATP at zero ATP concentration increased hyperbolically from unity to about 3.2 as the concentration of fructose 6-phosphate was increased. Similarly, the ratio Flux of fructose 1,6-bisphosphate----ATP/Flux of fructose 1,6-bisphosphate----fructose 6-phosphate at zero fructose 6-phosphate concentration increased from unity to about 1.4 as the concentration of ATP was increased. The addition of substrates must therefore be random, whatever the other aspects of the reaction. Further, from the plateau values of the ratios, it follows that the substrates dissociate very infrequently from the ternary complex and that at a low substrate concentration 72% of the reaction follows the pathway in which ATP adds first to the enzyme. Isotope-trapping studies with [32P]ATP confirmed that ATP can bind first to the enzyme in rate-limiting step and that dissociation of ATP from the ternary complex is slow in relation to the forward reaction. No isotope trapping of [U-14C]-fructose 6-phosphate could be demonstrated. The ratios Flux of ATP----fructose 1,6-bisphosphate/Flux of ATP----ADP measured at zero ADP concentration and the reciprocal of the ratio measured at zero fructose 1,6-bisphosphate concentration did not differ significantly from unity. Calculated values for these ratios based on the kinetics of the reverse reaction and assuming ordered dissociations of products or a ping-pong mechanism gave values very significantly greater than unity. These findings exclude an ordered dissociation or a substantial contribution from a ping-pong mechanism, and it is concluded that the reaction is sequential and that dissociation of products is random. Rate constants were calculated for the steps in the enzyme reaction. The results indicate a considerable degree of co-operativity in the binding between the two substrates. The observations on phosphofructokinase are discussed in relation to methods of measurement and interpretation of flux ratios and in relation to the mechanism of other kinase enzymes.  相似文献   

2.
In anaerobically grown yeast cells which lack functional mitochondria, the presence of diethylstilbestrol (DES) depressed glycolysis. The addition of the inhibitor markedly increased the cellular concentration of glycolytic intermediates which are formed prior to the pyruvate kinase step as well as to bring about an increase in the [ATP]/[ADP] ratio. Under these conditions an 18 fold decrease in the mass action ratio for pyruvate kinase [( pyruvate] [ATP]/[phosphoenolpyruvate] [ADP]) was noted, however, there was little if any effect on the other glycolytic enzymes. These results suggest that the depression of anaerobic glycolysis caused by DES results from a blockage at the level of the regulatory enzyme pyruvate kinase through a modification of its intracellular environment.  相似文献   

3.
Slow dissociation of ATP from the calcium ATPase   总被引:1,自引:0,他引:1  
The acyl-phosphate intermediate of the sarcoplasmic reticulum calcium ATPase reaction, formed in a brief incubation of vesicular enzyme with 5 microM [gamma-32P]ATP and calcium, reacts biphasically with added ADP (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4). Both the burst size and the rate constant for the slow phase increase with increasing ADP concentration in the way that is expected if the burst represents very rapid formation of an equilibrium amount of enzyme-bound ATP and the slow phase represents rate-limiting dissociation of ATP. Also consistent with this interpretation are the slow labeling of phosphoenzyme under conditions in which unlabeled ATP must dissociate first and the observation of a burst of ATP formation on ADP addition to phosphoenzyme. Values of the equilibrium constants for ADP dissociation from phosphoenzyme (0.75 mM), for ATP formation on the enzyme (2.3), and for the ATP dissociation rate constant (37 s-1) were obtained from a quantitative analysis of the data.  相似文献   

4.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

5.
Several experimental parameters, critical to the analysis of ATP synthesis by sarcoplasmic reticulum ATPase, were determined experimentally. 1) The phosphorylated enzyme intermediate obtained with acetylphosphate in the presence of a Ca2+ gradient was shown to be entirely ADP sensitive but quite stable in the absence of added ADP. On the contrary, the phosphoenzyme obtained with ATP is unstable due to the ADP formed during the phosphoryl transfer reaction. For this reason, addition of ADP to [32P]phosphoenzyme obtained with [32P]acetylphosphate provides the simplest conditions for kinetic studies on [gamma-32P]ATP synthesis. 2) The dissociation rate constant of newly synthesized ATP (in the reverse direction of the ATPase cycle) was measured experimentally and found to be 16 s-1. This value agrees well with the dissociation rate constant determined for adenyl-5'-yl imidodiphosphate bound to this enzyme. 3) ATP synthesis observed in the absence of a Ca2+ gradient was shown to be a kinetic overshoot due to ligand-induced perturbation of a limited number of partial reactions and occurring before equilibration of the entire system. Most of the ATP formed under these conditions was subsequently hydrolyzed as the overall equilibrium was reached. 4) Based on these and other (previously characterized) parameters, satisfactory simulations of single and multiple cycle ATP synthesis, in the presence and in the absence of a Ca2+ gradient, were obtained.  相似文献   

6.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

7.
The ATP-dependent phosphoenzyme formation and its reversal were studied at 0 degrees C and pH 7.0 in the ATPase of sarcoplasmic reticulum. Addition of KCl or several other salts (approximately 100 mM) decreased the maximum rate of ADP-induced dephosphorylation of phosphoenzyme as well as the apparent affinity of the phosphoenzyme toward ADP. High ATP had a similar effect on the latter, whereas it had little effect on the former. In contrast, high KCl or a considerable change in the ionic strength had little effect on the initial rate of phosphoenzyme formation at saturating ATP concentrations. During steady state phosphorylation at 1.0 mM MgCl2 and 5.0 mM CaCl2 in the absence of added KCl, a significant amount of [gamma-32P]ATP remained bound to the enzyme even when the enzyme concentration was much in excess over that of [gamma-32P]ATP. Evidence is presented that this enzyme-ATP complex represents a precursor to the phosphoenzyme. ATP dissociated slowly (0.20 s-1) from this enzyme-ATP complex and addition of high KCl or other salts accelerated its dissociation. In contrast, when the enzyme was complexed with adenyl-5'-yl (beta, gamma-methylene)diphosphonate in the absence of added KCl under these conditions, dissociation of the nucleotide from the complex as estimated in the displacement experiment with [gamma-32P]ATP, was found to be much faster than that of ATP.  相似文献   

8.
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.  相似文献   

9.
Subunit alpha (Mr 89,000) from vacuolar membrane H+-translocating adenosine triphosphatase of the yeast Saccharomyces cerevisiae was found to bind 8-azido[alpha-32P]adenosine triphosphate. Labeling by this photosensitive ATP derivative was saturable with an apparent dissociation constant of 10(-6) to 10(-5) M and decreased in the presence of ATP and ADP. The enzyme was inactivated by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), with about 1 microM causing half-maximal inactivation in the neutral pH range. This inactivation was prevented by the presence of ATP, ADP, or adenosyl-5'-yl imidodiphosphate (AMP-PNP). The original activity was restored by treating the inactivated enzyme with 2-mercaptoethanol. Kinetic and chemical studies of the inactivation showed that the activity was lost on chemical modification of a single tyrosine residue per molecule of the enzyme. When the enzyme was inactivated with [14C]NBD-Cl, subunit alpha was specifically labeled, and this labeling was completely prevented by the presence of ATP, GTP, ADP, or AMP-PNP. From these results, it was concluded that subunit alpha of yeast vacuolar H+-ATPase has a catalytic site that contains a single, essential tyrosine residue. The kinetics of single site hydrolysis of [gamma-32P]ATP (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100) indicated the formation of an enzyme-ATP complex and subsequent hydrolysis of bound ATP to ADP and Pi at the NBD-Cl-sensitive catalytic site. NBD-Cl inactivated the single site hydrolysis and inhibited the formation of an enzyme-ATP complex. Dicyclohexylcarbodiimide did not affect the single site hydrolysis, but inhibited the enzyme activity under steady-state conditions.  相似文献   

10.
The human P-glycoprotein (Pgp, ABCB1) is an ATP-dependent efflux pump for structurally unrelated hydrophobic compounds, conferring simultaneous resistance to and restricting bioavailability of several anticancer and antimicrobial agents. Drug transport by Pgp requires a coordinated communication between its substrate binding/translocating pathway (substrate site) and the nucleotide binding domains (NBDs or ATP sites). In this study, we demonstrate that certain thioxanthene-based Pgp modulators, such as cis-(Z)-flupentixol and its closely related analogues, effectively disrupt molecular cross talk between the substrate, and the ATP, sites without affecting the basic functional aspects of the two domains, such as substrate recognition, binding, and hydrolysis of ATP and dissociation of ADP following ATP hydrolysis. The allosteric modulator cis-(Z)-flupentixol has no effect on [alpha-(32)P]-8-azido-ATP binding to Pgp under nonhydrolytic conditions or on the K(m) for ATP during ATP hydrolysis. Both hydrolysis of ATP and vanadate-induced [alpha-(32)P]-8-azido-ADP trapping (following [alpha-(32)P]-8-azido-ATP breakdown) by Pgp are stimulated by the modulator. However, the ability of Pgp substrates (such as prazosin) to stimulate ATP hydrolysis and facilitate vanadate-induced trapping of [alpha-(32)P]-8-azido-ADP is substantially affected in the presence of cis-(Z)-flupentixol. Substrate recognition by Pgp as determined by [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) binding both in the presence and in the absence of ATP is facilitated by the modulator, whereas substrate dissociation in response to vanadate trapping is considerably affected in its presence. In the Pgp F983A mutant, which is impaired in modulation by cis-(Z)-flupentixol, the modulator has a minimal effect on substrate-stimulated ATP hydrolysis as well as on substrate dissociation coupled to vanadate trapping. Finally, cis-(Z)-flupentixol has no effect on dissociation of [alpha-(32)P]-8-azido-ADP (or ADP) from vanadate-trapped Pgp, which is essential for subsequent rounds of ATP hydrolysis. Taken together, our results demonstrate a distinct mechanism of Pgp modulation that involves allosteric disruption of molecular cross talk between the substrate, and the ATP, sites without any direct interference with their individual functions.  相似文献   

11.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

12.
Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either [gamma-(32)P]ATP or (14)C/(3)H-labeled and unlabeled nucleotides as appropriate substrates. Data show that the juice contains the enzyme ecto-nucleoside triphosphate diphosphohydrolase that can hydrolyze both [(14)C]ATP and [(3)H]ADP about equally well, i.e. CD39. Reverse-phase high-performance liquid chromatography analysis additionally shows that this enzyme has broad substrate specificity toward other nucleotides, UTP, UDP, ITP, and IDP. In addition, secretion contains ecto-5'-nucleotidase, CD73, further converting [(3)H]AMP to adenosine. Along with highly active hydrolytic enzymes, there were also ATP-generating enzymes in pancreatic juice, adenylate kinase, and NDP kinase, capable of sequentially phosphorylating AMP via ADP to ATP. Activities of nonspecific phosphatases, nucleotide pyrophosphatase/phosphodiesterases, and adenosine deaminase were negligible. Taken together, CCK-8 stimulation of pancreas causes release of both ATP-consuming and ATP-generating enzymes into pancreatic juice. This newly discovered richness of secreted enzymes underscores the importance of purine signaling between acini and pancreatic ducts lumen and implies regulation of the purine-converting enzymes release.  相似文献   

13.
1. The distribution of labeled and unlabeled adenine-nucleotides inside and outside mitochondria was followed after addition of [14C]ADP to rat liver mitochondria. Two types of mitochondria were used: 1, respiring mitochondria which were carrying out oxidative phosphorylation and which had been replenished in ATP by incubation in a medium supplemented with succinate and phosphate; 2, non-respiring mitochondria which had been partially depleted of ATP by incubation in a medium supplemented with rotenone and phosphate. During the first minute following addition of [14C]ADP to the respiring mitochondria, the pre-existing intramitochondrial (internal) [12C]ATP was released into the medium and replaced by newly synthesized [14C]ATP. No [14C]ADP accumulated in the mitochondria. It is suggested that extramitochondrial (external) ADP entering respiring mitochondria in exchange for internal ATP is phosphorylated to ATP before its complete release in the matrix space. In non-respiring mitochondria, the entry of [14C]ADP into the mitochondria was accompanied by the appearance in the external space of [12C]ADP and [12C]ATP, with a marked predominance of [12C]ADP. Thus in non-respiring mitochondria, the residual internal ATP is dephosphorylated to ADP in the inner membrane before being released outside the mitochondria. 2. When mitochondria were incubated with glutamate, ADP and [32P]phosphate, the [32P]ATP which accumulated in the matrix space became rapidly labeled in both the P gamma and P beta groups of the ATP, due to the presence of a transphosphorylation system in the mitochondrial matrix. The [32P]ATP which accumulated outside the mitochondria was also labeled in the P beta group, although less rapidly than the internal ATP. Our data show that a large fraction (75-80%) of the ATP produced by phosphorylation of added ADP within the inner mitochondrial membrane is released into the matrix space before being transported out from the mitochondria; only a small part (20-25%) is released directly outside the mitochondria without penetrating the matrix space. 3. In respiring and phosphorylating mitochondria, the value of the Km of the ADP-carrier for external ADP was 2-4 times lower than its value in non-respiring and non-phosphorylating mitochondria. 4. The above experimental data are discussed with reference to the topological and functional relationships between the ADP-carrier and the oxidative phosphorylation complex in the inner mitochondrial membrane. They strongly suggest that the ADP-carrier comes to the close neighbourhood of the ATP synthetase on the matrix side of the inner membrane.  相似文献   

14.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

15.
Adenosine diphosphate sulphurylase activity in leaf tissue   总被引:6,自引:3,他引:3       下载免费PDF全文
1. A new method is described for the assay of ADP sulphurylase. The method involves sulphate-dependent [(32)P]P(i)-ADP exchange; the method is simpler, more sensitive and more direct than the method involving adenosine 5'-sulphatophosphate-dependent uptake of P(i). 2. ADP sulphurylase activity was demonstrated in crude extracts of leaf tissue from a range of plants. Crude spinach extract catalysed the sulphate-dependent synthesis of [(32)P]ADP from [(32)P]P(i); spinach extracts did not catalyse sulphate-dependent AMP-P(i), ADP-PP(i) or ATP-P(i) exchange under standard assay conditions. ADP sulphurylase activity in spinach leaf tissue was associated with chloroplasts and was liberated by sonication. 3. Some elementary kinetics of crude spinach leaf and purified yeast ADP sulphurylases in the standard assay are described; addition of Ba(2+) was necessary to minimize endogenous P(i)-ADP exchange of the yeast enzyme and crude extracts of winter-grown spinach. 4. Spinach leaf ADP sulphurylase was activated by Ba(2+) and Ca(2+); Mg(2+) was ineffective. The yeast enzyme was also activated by Ba(2+). The activity of both enzymes decreased with increasing ionic strength. 5. Purified yeast and spinach leaf ADP sulphurylases were sensitive to thiol-group reagents and fluoride. The pH optimum was 8. ATP inhibited sulphate-dependent P(i)-ADP exchange. Neither selenate nor molybdate inhibited sulphate-dependent P(i)-ADP exchange and crude spinach extracts did not catalyse selenate-dependent P(i)-ADP exchange. 6. The presence of ADP sulphurylase activity jeopardizes the enzymic synthesis of adenosine 5'-sulphatophosphate from ATP and sulphate with purified ATP sulphurylase and pyrophosphatase.  相似文献   

16.
1. Pyruvate kinase purified from the hepatopancrease of Carcinus maenas exhibited sigmoidal saturation kinetics with respect to the substrate phosphoenolpyruvate in the absence of the allosteric activator fructose 1,6-bisphosphate, but normal hyperbolic saturation was seen in the presence of this activator. The activation appears to be the result of a decrease in the s0.5 (phosphoenolpyruvate) and not to a change in Vmax. 2. In the presence of ADP and ATP at a constant nucleotide-pool size the results indicate that phosphoenolpyruvate co-operativity is lost on increasing the [ATP]/[ADP] ratio. 3. Paralleling this change is the observation that the fructose 1,6-bisphosphate activation became less at the [ATP]/[ATP] ratio was increased. This was due to the enzyme exhibiting a near-maximal activity in the absence of activator. 4. L-Alanine inhibited the enzyme, but homotropic co-operative interactions were only seen with a cruder (1000000g supernatant) enzyme preparation. The inhibition by alanine could be overcome by increasing the concentration of either phosphoenolpyruvate or fructose 1,6-bisphosphate, although increasing the L-alanine concentration did not appear to be able to reverse the activation by fructose 1,6-bisphosphate. 5. In the presence of a low concentration of phosphoenolpyruvate, increasing the concentration of the product, ATP, caused an initial increase in enzyme activity, followed by an inhibitory phase. In the presence of either fructose 1,6-bisphosphate or L-alanine only inhibition was seen. 6. The inhibition by ATP could not be completely reversed by fructose 1,6-bisphosphate.  相似文献   

17.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

18.
P Fromme  P Gr?ber 《FEBS letters》1990,269(1):247-251
ATP-hydrolysis was measured with thylakoid membranes during continuous illumination. The concentrations of free and enzyme-bound ATP, ADP and Pi were measured using either cold ATP, [gamma-32P]ATP or [14C]ATP. The concentration of free ATP was constant, free ADP and enzyme-bound ATP were below the detection limit. Nevertheless, [gamma-32P]ATP was bound, hydrolyzed and 32Pi was released. The ADP was not released from the enzyme but cold Pi was bound from the medium, cold ATP was resynthesized and released. A quantitative analysis gave the following rate constants: ATP-binding kATP = 2 . 10(5) M-1 s-1, ADP-release: kADP less than 10(-2)s-1, Pi-release: kPi = 0.1 s-1. These rate constants are considerably smaller than under deenergized conditions. The rate constant for the release of ATP can be estimated to be at least 0.2 s-1 under energized conditions. Obviously, energization of the membrane, i.e. protonation of the enzyme leads mainly to a decrease of the rate of ATP-binding, to an increase of the rate of ATP release and to a decrease of the rate of ADP-release.  相似文献   

19.
1. An assay, based on the transfer of label from [gamma-32P]ATP to [32P]phosphoenolpyruvate, suitable for a steady-state kinetic analysis of pyruvate kinase in the reverse direction (i.e. phosphoenolpyruvate synthesis), is described. 2. This assay was used in a kinetic investigation of the rabbit muscle enzyme including initial-rate and product-inhibition experiments, at a pH of 7.4 and constant concentrations of total K+ and free Mg2+. 3. These studies indicate that there is a random release of ADP and phosphoenolpyruvate from the enzyme and that there is a competitive substrate inhibition by ATP. Some of the results were suggestive that the rapid-equilibrium assumption, generally used for this enzyme was not valid. 4. Techniques were developed to measure the rate of isotopic exchange between all the substrate-product pairs. 5. By using these techniques the rates of isotopic exchange at chemical equilibrium were measured. The results indicate that this enzyme does not catalyse a truly rapid-equilibrium random mechanism, although in the forward reaction all initial-rate data obtained to date are consistent with this assumption.  相似文献   

20.
Nucleotide-free kinesin hydrolyzes ATP with burst kinetics   总被引:1,自引:0,他引:1  
Bovine brain kinesin binds ADP tightly and contains a stoichiometric amount of ADP at its active site when isolated in the presence of free Mg2+ (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318). EDTA in excess of Mg2+ weakens ADP binding and nucleotide-free kinesin can be prepared by gel filtration with excess EDTA. On addition of ATP, this nucleotide-free enzyme catalyzes the rapid hydrolysis of a stoichiometric amount of ATP in a burst phase followed by much slower continued ATP hydrolysis limited by the release of ADP from the active site. This burst reaction is evident both by formation of [32P]Pi from [gamma-32P]ATP and by formation of [alpha-32P]ADP from [alpha-32P]ATP. At 1.1 nM kinesin active sites, the observed rate of the burst phase increases linearly with ATP over the 1-20 nM range yielding a bimolecular rate of net ATP binding and hydrolysis of 2.5 microM-1 s-1. The intercept at zero ATP is 0.008 s-1 which equals the ADP release rate at 0.008-0.009 s-1. This predicts a Km for ATP of approximately 3.5 nM and measurements of the dependence on ATP concentration of the steady state rate and amount of bound ADP are consistent with a Km of this magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号