首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

2.
During recent years signals leading to the early stages of nodulation of legumes by rhizobia have been identified. Plant flavonoids induce rhizobialnod genes that are essential for nodulation. Most of thenod gene products are involved in the biosynthesis of lipo-oligosaccharide molecules. The commonnodABC genes are minimally required for the synthesis of all lipo-oligosaccharides. Host-specificnod gene products in a givenRhizobium species are responsible for synthesis or addition of various moieties to those basic lipo-oligosaccharide molecules. For example, inR. leguminosarum, thenodFEL operon is involved in the production of lipo-oligosaccharide signals that mediate host specificity. AnodFE-determined highly unsaturated fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for inducing nodule meristems and pre-infection thread structures on the host plantVicia sativa. Lipo-oligosaccharides also trigger autoregulation of nodulation in pea and, if applied in excessive amounts to a legume, can prevent nodulation and thereby might play a role in competition. During our studies on the biosynthesis of lipo-oligosaccharides, we discovered that, besides the lipo-oligosaccharides, other metabolites are synthesizedde novo after induction of thenod genes. These novel metabolites appeared to be phospholipids, containing either one of the three fatty acids which are made by the action of NodFE inR. leguminosarum.  相似文献   

3.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

4.
Summary The presence of combined nitrogen in the soil suppresses the formation of nitrogen-fixing root nodules by Rhizobium. We demonstrate that bacterial genes determining early nodulation functions (nodABC) as well as the regulatory gene nodD3 are under nitrogen (NH 4 + ) control. Our results suggest that the gene product of nodD3 has a role in mediating the ammonia regulation of early nod genes. The general nitrogen regulatory (ntr) system as well as a chromosomal locus mutated in Rhizobium meliloti were also found to be involved in the regulation of nod gene expression. A R. meliloti mutant with altered sensitivity to ammonia regulation was isolated, capable of more efficient nodulation of alfalfa than the wild-type strain in the presence of 2 mM ammonium sulfate.  相似文献   

5.
Inoculation of Vicia sativa subsp. nigra (V. sativa) roots with Rhizobium leguminosarum biovar. viciae (R.l. viciae) bacteria substantially increases the ability of V. sativa to induce rhizobial nodulation (nod) genes. This increase is caused by the additional release of flavanones and chalcones which all induce the nod genes of R.l. viciae (K. Recourt et al., Plant Mol Biol 16: 841–852). In this paper, we describe the analyses of the flavonoids present in roots of V. sativa. Independent of inoculation with R.l. viciae, these roots contain four 3-O-glycosides of the flavonol kaempferol. These flavonoids appeared not capable of inducing the nod genes of R.l. viciae but instead are moderately active in inhibiting the activated state of those nod genes. Roots of 7-day-old V. sativa seedlings did not show any kaempferol-glycosidase activity consistent with the observation that kaempferol is not released upon inoculation with R.l. viciae. It is therefore most likely that inoculation with infective (nodulating) R.l. viciae bacteria results in de novo flavonoid biosynthesis and not in liberation of flavonoids from a pre-existing pool.  相似文献   

6.
Thirty Tn5- or Tn1831-induced nodulation (nod) mutants of Rhizobium leguminosarum were examined for their genetic and symbiotic properties. Thirteen mutants contained a deletion in Sym plasmid pRL1JI. These deletions cover the whole nod region and are 50 kb in size. All remaining seventeen mutations are located in a 6.6 kb EcoRI nod fragment of the Sym plasmid. Mutations in a 3.5 kb part on the right hand side of this 6.6 kb fragment completely prevent nodulation on Vicia sativa. All mutants in this 3.5 kb area are unable to induce marked root hair curling and thick and short roots.Mutations in a 1.5 kb area on the left hand side of the 6.6 kb nod fragment generate other symbiotic defects in that nodules are only rarely formed and only so after a delay of several days. Moreover, infection thread formation is delayed and root hair curling is more excessive than that caused by the parental strain. Their ability to induce thick and short roots is unaltered.Mutations in this 1.5 kb region are not complemented by pRmSL26, which carries nod genes of R. meliloti, whereas mutations in the 3.5 kb region are all complemented by pRmSL26.Abbreviations Rps repression of production of small bacteriocin - Mep medium bacteriocin production - Nod nodulation - Fix fixation - Tsr thick and short roots - Flac root hair curling - Hsp host specificity - Flad root hair deformation - Tc tetracycline - Km kanamycin - Cm chloramphenicol - Sp spectinomycin - Sm streptomycin - R resistant  相似文献   

7.
Summary By insertional and deletional marker replacement mutagenesis the common nod region of Bradyrhizobium japonicum was examined for the presence of additional, essential nodulation genes. An open reading frame located in the 800 bp large intergenic region between nodD1 and nodA did not appear to be essential for nodulation of soybean. Furthermore, a strain with a deletion of the nodI- and nodJ-like genes downstream of nodC had a Nod+ phenotype. A mutant with a 1.7 kb deletion immediately downstream of nodD1 considerably delayed the onset of nodulation. This region carried a second copy of nodD (nodD2). A nodD1-nodD2 double mutant had a similar phenotype to the nodD2 mutant. Using a 22-mer oligonucleotide probe partially identical to the nod box sequence, a total of six hybridizing regions were identified in B. japonicum genomic DNA and isolated from a cosmid library. Sequencing of the hybridizing regions revealed that at least three of them represented true nod box sequences whereas the others showed considerable deviations from the consensus sequence. One of the three nod box sequences was the one known to be associated with nodA, whereas the other two were located 60 to 70 kb away from nif cluster I. A deletion of one of these two sequences plus adjacent DNA material mmutant 308) led to a reduced nodulation on Vigna radiata but not on soybean. Thus, this region is probably involved in the determination of host specificity.Dedicated to Prof. Giorgio Semenza on the occasion of his 60th birthday  相似文献   

8.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

9.
Swanson JA  Tu JK  Ogawa J  Sanga R  Fisher RF  Long SR 《Genetics》1987,117(2):181-189
Rhizobium meliloti Nod- mutant WL131, a derivative of wild-type strain 102F51, was complemented by a clone bank of wild-type R. meliloti 1021 DNA, and clone pRmJT5 was recovered. Transfer of pRmJT5 conferred alfalfa nodulation on other Rhizobium species, indicating a role in host range determination for pRmJT5. Mutagenesis of pRmJT5 revealed several segments in which transposon insertion causes delay in nodulation, and/or marked reduction of the number of nodules formed on host alfalfa plants. The set of mutants indicated five regions in which nod genes are located; one mutant, nod-216, is located in a region not previously reported to encode a nodulation gene. Other mutant phenotypes correlated with the positions of open reading frames for nodH, nodF and nodE , and with a 2.2-kb EcoRI fragment. A mutant in nodG had no altered phenotype in this strain. One nodulation mutant was shown to be a large deletion of the common nod gene region. We present a discussion comparing the various studies made on this extended nod gene region.  相似文献   

10.
Rhizobia are soil bacteria which symbiotically infect legume roots and generate nodules in which they fix atmospheric nitrogen for the plant in exchange for photosynthetically fixed carbon. A crucial aspect of signal exchange between these symbionts is the secretion of phenolic compounds by the host root which induce nodulation gene expression in the bacteria. Stimulation of nod gene expression by host phenolics is required for nodule formation, is biochemically specific at 10-6 M, and is mediated by nodD. We and others have shown that rhizobia display chemotaxis to 10-9 M of the same phenolic compounds. Chemotaxis to inducer phenolics is selectively reduced or abolished by mutations in certain nod genes governing nodulation efficiency or host specificity. Conversely, mutations in rhizobia that affect general motility or chemotaxis have substantial effects on nodulation efficiency and competitiveness. These findings suggest that microbes entering the rhizosphere environment may utilize minor, non-nutrient components in root exudates as signals to guide their movement towards the root surface and elicit changes in gene expression appropriate to this environment.  相似文献   

11.
Summary Using cloned Rhizobium phaseoli nodulation (nod) genes as hybridization probes homologous restriction fragments were detected in the genome of the slow-growing soybean symbiont, Bradyrhizobium japonicum strain 110. These fragments were isolated from a cosmid library, and were shown to lie 10 kilobasepairs (kb) upstream from the nifA and fixA genes. Specific nod probes from Rhizobium leguminosarum were used to identify nodA-, nodB-, and nodC-like sequences clustered within a 4.5 kb PstI fragment. A mutant was constructed in which the kanamycin resistance gene from Tn5 was inserted into the nodA homologous B. japonicum region. This insertion was precisely located, by DNA sequencing, to near the middle of the nodA gene. B. japonicum mutants carrying this insertion were completely nodulation deficient (Nod-).  相似文献   

12.
Rhizobia-legume symbiosis depends on molecular dialog, which involves the production of specific plant flavonoid compounds as signal molecules. Rhizobium tibeticum was recovered from the root nodule of fenugreek and identified by sequencing the 16S rRNA gene. The effect of salinity stress on nod gene expression was measured in terms of β-galactosidase activity. R. tibeticum containing Escherichia coli lacZ gene fusions to specific nodulation (nod) genes were used to determine β-galactosidase activity. Combination of hesperetin (7.5 µM) and apigenin (7.5 µM) significantly increased β-galactosidase activity more than the single application of hesperetin or apigenin. Preincubation of R. tibeticum with hesperetin and apigenin combination significantly alleviates the adverse effect of salinity on nod gene expression and therefore, enhances nodulation and nitrogen fixation of fenugreek.  相似文献   

13.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

14.
15.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

16.
17.
E. Jacobsen 《Plant and Soil》1984,82(3):427-438
Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation.The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.  相似文献   

18.
The synthesis of Rhizobium meliloti Nod signal molecules, encoded by the nod gene products, is finely regulated. A negative control of plasmid-borne nod gene expression is provided by the NoIR repressor encoded by the chromosomal noIR gene. NoIR was previously shown to downregulate the expression of the activator nodD1 gene and the common nodABC operon by binding to an overlapping region of the two promoters adjacent to the n1 nod-box (Kondorosi et al., 1989). We demonstrate here that NoIR also controls the expression of two additional genes, nodD2 and nodM, but does not directly regulate the expression of the host-specific nod genes located downstream of the n2, n3 and n5 nod-boxes. Thus, the nod genes are differentially regulated by NoIR and only those providing common nodulation functions, by determining the synthesis of the core Nod factor structure, are subjected to this negative regulation. Furthermore, NoIR has a strong negative effect on the production of Nod metabolites, the level of which may serve as a fine-tuning mechanism for optimal nodulation, specific to host-plant genotypes. In addition, it elicits preferential synthesis of Nod factors carrying unsaturated C16 fatty acids. Expression of noIR was high both in the free-living bacterium and in the bacteroid and it was downregulated by its own product and by the nod gene inducer luteolin.  相似文献   

19.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

20.
We show that expression of common nodulation genes in Rhizobium meliloti is under positive as well as negative control. A repressor protein was found to be involved in the negative control of nod gene expression. Whereas the activator NodD protein binds to the conserved cis-regulatory element (nod-box) required for coordinated regulation of nod genes, the repressor binds to the overlapping nodD1 and nodA promoters, at the RNA polymerase binding site. A model depicting the possible interaction of the plant-derived nod gene inducer (luteolin), the NodD and the repressor with the nod promoter elements is presented. Mutants lacking the repressor exhibited delayed nodulation phenotype, indicating that fine tuning of nod gene expression is required for optimal nodulation of the plant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号