首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulcerative colitis is an inflammatory bowel disease characterized by acute inflammation, ulceration, and bleeding of the colonic mucosa. Its cause remains unknown. Increases in adhesion molecules in vascular endothelium, and activated neutrophils releasing injurious molecules such as reactive oxygen species, are reportedly associated with the pathogenesis of dextran sodium sulfate (DSS)-induced colitis. Nitric oxide (NO) production derived from inducible NO synthase (iNOS) via activation of nuclear factor κB (NF-κB) has been reported. It is also reported that stimulation of Toll-like receptor 4 (TLR4) by lipopolysaccharide can activate NF-κB. In this study, we investigated the involvement of NO production in activation of the TLR4/NF-κB signaling pathway in mice with DSS-induced colitis. The addition of 5% DSS to the drinking water of male ICR mice resulted in increases in TLR4 protein in colon tissue and NF-κB p65 subunit in the nuclear fraction on day 3, increases in colonic tumor necrosis factor-α on day 4, and increases in P-selectin, intercellular adhesion molecule-1, NO2/NO3, and nitrotyrosine in colonic mucosa on day 5. These activated inflammatory mediators and pathology of colitis were completely suppressed by treatment with a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, as well as an iNOS inhibitor, aminoguanidine. Conversely, a NO-releasing compound, NOC-18, increased TLR4 levels and nuclear translocation of NF-κB p65 and exacerbated mucosal damage induced by DSS challenge. These data suggest that increases in TLR4 expression induced by drinking DSS-treated water might be directly or indirectly associated with NO overproduction.  相似文献   

2.
Although substance P (SP) has been implicated as a mediator of neurogenic inflammation in the small intestine, little information is available regarding the role of SP in the pathogenesis of chronic ulcerative colitis. In this study, our aim was to investigate whether the intraperitoneal administration of a nonpeptide neurokinin-1 (NK-1) antagonist, CP-96345, which antagonizes the binding of SP to its NK-1 receptor, results in the attenuation of colonic inflammation induced in rats by 5% dextran sodium sulfate (DSS) in drinking water for 10 days compared with an inactive enantiomer, CP-96344. Disease activity was assessed daily for 10 days, after which colonic tissue damage was scored and myeloperoxidase activity and colon and urinary 8-isoprostanes were measured. Animals receiving DSS exhibited marked physical signs of colitis by day 5 compared with controls. Chronic administration of the NK-1 antagonist significantly reduced the disease activity index, mucosal myeloperoxidase activity, colonic tissue damage score, and mucosal and urinary levels of 8-isoprostanes compared with inactive enantiomer- or vehicle-injected (saline) animals receiving DSS alone. These data indicate that the administration of an NK-1 antagonist can attenuate colonic inflammation and oxidative stress and suggest a novel therapeutic approach in the treatment of chronic ulcerative colitis.  相似文献   

3.
Cho JY  Chang HJ  Lee SK  Kim HJ  Hwang JK  Chun HS 《Life sciences》2007,80(10):932-939
beta-Caryophyllene (BCP), a naturally occurring plant sesquiterpene, was examined for anti-inflammatory activity in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS). Colitis was induced by exposing male BALB/c mice to 5% DSS in drinking water for 7 days. BCP in doses of 30 and 300 mg/kg was administered orally once a day, beginning concurrently with exposure to DSS. The body weight and colon length were measured, and histological damage and myeloperoxidase (MPO) activity as well as inflammatory cytokines were assessed in both serum and colonic tissue after 7 days of treatment with DSS. The DSS treatment damaged the colonic tissue, increased MPO activity and inflammatory cytokines, lowered the body weight, and shortened the length of the colon. Oral administration of BCP at 300 mg/kg significantly suppressed the shortening of colon length and slightly offset the loss of body weight. BCP treatment (300 mg/kg) also significantly reduced the inflammation of colon and reversed the increase in MPO activity that had been induced by exposure to DSS. Further, BCP significantly suppressed the serum level of IL-6 protein (a 55% reduction) as well as the level of IL-6 mRNA in the tissue. These results demonstrate that BCP ameliorates DSS-induced experimental colitis, and may be useful in the prevention and treatment of colitis.  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a crucial role in immunity and inflammation. Our aim was to obtain insight in the role of PACAP in experimental colitis in mice and thus its possible role in inflammatory bowel disease. PACAP-deficient (PACAP-/-) mice and wild-type control mice were challenged by colitis-inducing agent, dextran sulfate sodium (DSS). We monitored clinical symptoms, intestinal morphology, and difference of cytokine production in the proximal and distal colon. After DSS administration, mortality was more severe in PACAP-/- mice versus wild-type control mice. The histological score and the disease activity index of PACAP-/- mice were significantly higher than those of wild-type control mice. In proximal colon, production of IL-1beta and IL-6 in PACAP-/- mice were significantly upregulated on day 8 after DSS administration, compared to wild-type control mice. In distal colon, furthermore, production of IFNgamma, IL-1beta, IL-6, IL-12, and KC were significantly higher in PACAP-/- mice than in wild-type control mice on day 4. Our findings indicate that PACAP regulates the production of pro-inflammatory cytokine in the experimental colitis.  相似文献   

5.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

6.
FRom several in vitro and in vivo studies involvement of somatostatin (SMS) in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 microg daily) or octreotide (3 microg daily) subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS) 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin-1beta (IL-1beta), IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.  相似文献   

7.
Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS­induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.  相似文献   

8.
Exposure to dextran sulfate sodium (DSS) induces acute colitis, which is normally resolved after DSS removal. To study chronicity, mice are typically subjected to three to five cycles of weekly DSS exposures, each followed by a 1- to 2-wk rest period. Here, we describe a novel and convenient way of inducing chronic, progressive colitis by a single exposure to DSS. C57BL/6 mice exposed to DSS for 5 days developed acute colitis that progressed to severe chronic inflammation. The plasma haptoglobin levels remained high during the chronic phase, showing that the inflammation was active. Surprisingly, the mice regained their original weight along with the progression of colitis, and the only apparent symptom was loose feces. Histopathological changes 4 wk after DSS removal were dense infiltrates of mononuclear cells, irregular epithelial structure, and persistent deposits of collagen. A progressive production of the cytokines IL-1beta, IL-12 p70, and IL-17 correlated with the extensive cellular infiltration, whereas high IFN-gamma production was mainly found late in the chronic phase. Similar to C57BL/6 mice, BALB/c mice exposed to 5 days of DSS developed acute colitis as previously described. The acute colitis was accompanied by elevated plasma levels of haptoglobin and increased colonic levels of IL-1alpha/beta, IL-6, IL-18, and granulocyte colony-stimulating factor. However, soon after DSS removal, BALB/c mice recovered and were symptom free within 2 wk and completely recovered 4 wk after DSS removal in terms of histopathology, haptoglobin levels, and local cytokine production. In summary, these data stress the effect of genetic background on the outcome of DSS provocation. We believe that the present protocol to induce chronic colitis in C57BL/6 mice offers a robust model for validating future therapies for treatment of inflammatory bowel disease.  相似文献   

9.
Inflammatory bowel disease (IBD) is an immunologically mediated disorder that is characterized by chronic, relapsing, and inflammatory responses. Dextran sulfate sodium (DSS)-induced experimental colitis in mice has been recognized as a useful model for human IBD and interleukin (IL)-1beta is a key cytokine in the onset of IBD. The purpose of the present study was to clarify which pro-inflammatory mediators are targeted by IL-1beta in mice with DSS-induced colitis. First, we found that DSS markedly induced IL-1beta production in both dose- and time-dependent manners (P < 0.05 and P < 0.01, respectively) in murine peritoneal macrophages (pMphi), while that of tumor necrosis factor-alpha was insignificant. Further, the expressions of mRNA and protein for IL-1beta were increased in colonic mucosa and pMphi from mice that received drinking water containing 5% DSS for 7 days (P < 0.01, each). In addition, the expressions of IL-6, granulocyte macrophage-colony stimulating factor, inducible nitric oxide synthase, and cyclooxygenase-2 mRNA were also time dependently increased (P < 0.01, each). Furthermore, administration of rIL-1beta (10 microg/kg, i.p.) significantly induced the expressions of IL-1beta and IL-6 mRNA in colonic mucosa from non-treated mice (P < 0.01). Anti-mIL-1beta antibody treatments (50 microg/kg, i.p.) attenuated DSS-induced body weight reduction and shortening of the colorectum (P < 0.05, each), and abrogated the expressions of IL-1beta and IL-6 mRNA in colonic mucosa (P < 0.01, each). Our results evidently support the previous findings that IL-1beta is involved in the development of DSS-induced experimental colitis in mice, and strongly suggest that IL-1beta targets itself and IL-6 for progressing colonic inflammation.  相似文献   

10.
Dharmani P  Leung P  Chadee K 《PloS one》2011,6(9):e25058
The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC.  相似文献   

11.
Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.  相似文献   

12.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

13.

Background

High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation.

Aim

This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG) is a good strategy to reduce intestinal inflammation.

Methods

Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS); a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses.

Results

DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG.

Conclusions

HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.  相似文献   

14.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

15.
BACKGROUND: Overproduction of nitric oxide by the inducible form of nitric oxide synthase (iNOS) has been implicated in colitis. Different authors have postulated both toxic and protective effects of nitric oxide (NO) in the pathophysiology of active inflammation. The objective of this study was to examine the role of iNOS in experimental chronic colitis using iNOS-deficient mice. METHODS: For induction of colitis, mice received three cycles of 2% of dextran sodium sulfate (DSS) (M.W. 40,000) treatment in drinking water. The degree of colonic inflammation, leukocyte infiltration, and the expression of cell adhesion molecules were determined. INOS expression and nitrotyrosine were also determined by immunohistochemistry. RESULTS: After DSS treatment, a moderate colitis with marked cell infiltration was observed. Intense expression of iNOS was observed on infiltrating cells as well as on the colonic mucosal epithelium in these animals. In the iNOS-deficient mice, tissue damage was significantly diminished. No iNOS or nitrotyrosine staining was found in iNOS-deficient mice. The number of infiltrating cells and the expression of mucosal adressin cell adhesion molecule-1 were significantly attenuated in the DSS-treated colon of iNOS-deficient mice. CONCLUSION: Induction of iNOS seems to act as a critical toxic effector molecule in the pathogenesis of chronic colonic inflammation.  相似文献   

16.
17.
Peripheral tachykinins (TKs) are believed to play a role in the pathogenesis of inflammatory bowel diseases (IBD). In this study we investigated changes induced by central administration of two natural TK receptor agonists, NK(1) (PG-SPI) and NK(3) (PG-KII), on trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulphate (DSS)-induced experimental colitis in rats. Colitis was induced by instilling a single intracolonic dose of TNBS 50 mgkg(-1) (0.5 ml in 50% ethanol) or by oral administration of 5% DSS for 7 days. Each group of rats was intracerebroventricularly injected daily with PG-SPI and PG-KII (0.5, 5, and 50 microgkg(-1)). On day 3, TNBS-treated animals were killed and the severity of gut inflammation was evaluated by measuring myeloperoxidase (MPO) activity, interleukin-1beta (IL-1beta) production and by scoring macroscopic and histologic colonic damage. DSS-treated animals were checked daily for the length of survival and for stool consistency and faecal blood. In the TNBS group, PG-SPI and PG-KII increased scores for the severity of colonic damage, stimulated the production of IL-1beta and increased granulocyte infiltration into the colon (MPO activity). In the DSS group, PG-SPI and PG-KII decreased the percentage of surviving animals, and increased the number of rats that developed loose stools and blood in the faeces and the MPO activity. These results indicate that centrally injected NK(1) and NK(3) tachykinin receptor agonists play a proinflammatory role in experimentally-induced colitis in rats.  相似文献   

18.
Xia XM  Wang FY  Zhou J  Hu KF  Li SW  Zou BB 《PloS one》2011,6(11):e27282
Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway.  相似文献   

19.
Oxidative stress has been shown to play pivotal roles in the onset of inflammatory bowel disease. We evaluated the effects of a dietary anti-oxidant, Antioxidant Biofactor (AOB), a processed grain food, on dextran sulfate sodium (DSS)-induced colitis in mice. Female ICR mice were fed a diet containing 0.1% or 1% AOB for 2 weeks, during which they were given 5% DSS in drinking water for the latter 1 week to induce colitis. A diet containing 1% AOB, but not that with 0.1% AOB, attenuated DSS-induced body weight loss and colon shortening (each, P < 0.05), and dramatically improved colitis histologic scores. In addition, DSS-induced increases in colonic mucosal IL-1beta, but not TNF-alpha, protein levels were significantly abrogated in 1% AOB-fed mice (P < 0.05). Further, 1% dietary AOB abolished the expression of IL-1beta mRNA levels in colonic mucosa (P < 0.01). Our results suggest that AOB is effective for the prevention of DSS-induced colitis in mice.  相似文献   

20.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号