首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of A431 human epidermoid carcinoma cells with 4-phorbol 12-myristate 13-acetate (PMA) causes an inhibition of the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an inhibition of the EGF receptor tyrosine protein kinase activity. The hypothesis that PMA controls EGF receptor function by regulating the oligomeric state of the receptor was tested. Dimeric EGF receptors bound to 125I-EGF were identified by covalent cross-linking analysis using disuccinimidyl suberimidate. Treatment of cells with PMA in the presence of 20 nM 125I-EGF caused no significant change in the level of labeled cross-linked monomeric and dimeric receptor species. Investigation of the in vitro autophosphorylation of receptor monomers and dimers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide demonstrated that the treatment of cells with PMA caused an inhibition of the tyrosine phosphorylation of both monomeric and dimeric EGF receptors. We conclude that the inhibition of the EGF receptor tyrosine protein kinase activity caused by PMA is not associated with the regulation of the oligomeric state of the EGF receptor.  相似文献   

2.
Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C   总被引:2,自引:0,他引:2  
Protein kinase C (PKC) is an important intracellular signaling molecule whose activity is essential for a number of aspects of neuronal function including synaptic plasticity. We investigated the regulation of PKC activity by reactive nitrogen species in order to examine whether such species regulate PKC in neurons. Neither autonomous nor cofactor-dependent PKC activity was altered when either hippocampal homogenates or rat brain purified PKC were incubated briefly with three different nitric oxide donor compounds. However, brief incubation of either hippocampal homogenates or purified PKC with peroxynitrite (ONOO(-)) inhibited cofactor-dependent PKC activity in a manner that correlated with the nitration of tyrosine residues on PKC, suggesting that this modification was responsible for the inhibition of PKC. Consistent with this idea, reducing agents had no effect on the inhibition of PKC activity caused by ONOO(-). Because there are numerous PKC isoforms that differ in the composition of the regulatory domain, we studied the effect of ONOO(-) on various PKC isoforms. ONOO(-) inhibited the cofactor-dependent activity of the alpha, betaII, epsilon, and zeta isoforms, indicating that inhibition of enzymatic activity by ONOO(-) was not PKC isoform-specific. We also were able to isolate nitrated PKCalpha and PKCbetaII from ONOO(-)-treated hippocampal homogenates via immunoprecipitation. Collectively, our findings support the hypothesis that ONOO(-) inhibits PKC activity via tyrosine nitration in neurons.  相似文献   

3.
The product of the c-kit proto-oncogene, denoted Kit/SCF-R, encodes a tyrosine kinase receptor for stem cell factor (SCF). Kit/SCF-R induces proliferation, differentiation or migration of cells within the hematopoietic, gametogenic and melanogenic lineages at different developmental stages. We report here that protein kinase C (PKC) mediates phosphorylation of Kit/SCF-R on serine residues in response to SCF or PMA in intact cells. The phosphorylation inhibits SCF-induced tyrosine autophosphorylation of Kit/SCF-R. In vitro studies showed that PKC phosphorylated the Kit/SCF-R directly on serine residues and inhibited autophosphorylation of Kit/SCF-R, as well as its kinase activity towards an exogenous substrate. The PKC-induced phosphorylation did not affect Kit/SCF-R ligand binding affinity. Inhibition of PKC led to increased SCF-induced tyrosine autophosphorylation, as well as increased SCF-induced mitogenicity. In contrast, PKC was necessary for SCF-induced motility responses, including actin reorganization and chemotaxis. Our data suggest that PKC is involved in a negative feedback loop which regulates the Kit/SCF-R and that the activity of PKC determines whether the effect of SCF will be preferentially mitogenic or motogenic.  相似文献   

4.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

5.
6.
Protein kinase C in tumoricidal activation of mouse macrophage cell lines   总被引:3,自引:0,他引:3  
A potential role of protein kinase C (PKC) in lipopolysaccharide- (LPS-) induced tumoricidal activation of macrophages was investigated by using two mouse macrophage cell lines (P388D1 and J774). J774 cells are stimulated by LPS to kill target P815 mastocytoma cells, whereas P388D1 cells fail to develop such an ability. Pretreatment of J774 cells with H-7 or phorbol myristate acetate resulted in a significant inhibition of LPS-induced cytotoxicity, whereas pretreatment with H-8, ML-7, HA1004, or W-7 did not. Since these results suggested a critical role of PKC in the activation process, the properties of PKC in the two cell lines were compared. Western blotting with rabbit antiserum specific for the PKC beta regulatory domain allowed detection of a protein of 79 kilodaltons (kDa) in the detergent lysates of both cell lines that were not stimulated by LPS. However, LPS treatment resulted in the appearance of a second protein of 40 kDa only in J774 cells and not in P388D1 cells. Furthermore, two forms of protein kinase (one basic and the other acidic) were identified in the cytosol of J774 cells by HPLC on DEAE-5PW, whereas only the basic form was found in P388D1 cells. On the basis of the response of the basic and acidic form protein kinases to phosphatidylserine (PS), diolein, and Ca2+, the basic form was found to contain both regulatory and catalytic domains of PKC, whereas the acidic form was suggested to represent the PKC catalytic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We investigated the role of protein kinase C (PK-C) in the activation of cytotoxic peritoneal murine macrophages (M phi) by IFN-gamma or by IFN-beta. Two potent inhibitors of PK-C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and retinal, were used. We found that both drugs inhibited in a dose-dependent manner the activation of cytotoxicity induced by IFN-beta, suggesting the requirement for intact PK-C activity in this process. In contrast, neither H-7 nor retinal inhibited the activation of cytotoxic M phi by IFN-gamma, indicating that IFN-gamma acts through a PK-C-independent pathway. The effectiveness of both drugs in inhibiting PK-C in intact M phi was evaluated by measuring the inhibition of induction of c-fos mRNA by L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, a process that has been shown to be dependent on PK-C activation. We have found a strict correlation in the dose-dependent inhibition by both drugs of c-fos mRNA induction and activation of M phi by IFN-beta. These results indicate that different pathways of activation are triggered by IFN-gamma and IFN-beta, the former being independent from and the latter dependent on intact PK-C activity.  相似文献   

8.
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.  相似文献   

9.
Short term pretreatment of the B lymphoma, BAL17, with phorbol 12-myristate, 13-acetate (PMA) blocks elevation in inositol trisphosphate (InsP3) and increases in intracellular free calcium concentration ([Ca2+]i) in response to anti-IgM. The inhibition of enhanced InsP3 level is detected at 30 sec after the addition of anti-IgM, the earliest point measured, and is reversed by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, an inhibitor of protein kinase C (PKC). The blockade of increased [Ca2+]i by PMA is also observed at the earliest time examined (15 sec), is reversed by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride, and is mimicked by dioctanoylglycerol, a physiologic activator of PKC. The enhanced production of inositol phosphates in response to NaF is also blocked in BAL17 cells pretreated with PMA. Extended treatment of BAL17 cells with PMA depletes cellular PKC. Such pretreatment with PMA enhances rather than inhibits increased InsP3 levels in response to anti-IgM and leads to more sustained elevations in [Ca2+]i than in normal BAL17 cells. These results lead us to conclude that PMA-blockade of the response of B cells to anti-IgM represents a disruption of the transmembrane signaling process (desensitization of the signaling pathway) as a result of a PKC-mediated phosphorylation event.  相似文献   

10.
11.
Treatment of M5076 tumor cells with the phorbol estes 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13 dibutyrate (PdBu) inhibited cellular proliferation, whereas 1,2-dioctanoyl-glycerol (DiC8) and 1-oleoyl2-acetyl-glycerol (OAG) did not affect cell growth. Inhibition of cellular proliferation in this cell line appears to be a consequence of protein kinase C (PKC) down-regulation since phorbol esters, but not a single application of diacylglycerols (DGs) down-regulated cellular PKC levels. By repeated application of DGs, PKC down-regulation was achieved and correlated with inhibition of proliferation. Phorbol ester-induced PKC down-regulation was reversible, upon removal of the phorbol ester, and the reappearance of PKC was associated with resumption of proliferation. The mitogenic responsiveness of these cells to added serum depended upon cellular PKC levels. Phorbol esters also caused the phosphorylation of two proteins which were not phosphorylated in response to DG treatment. Inhibition of growth of M5076 cells appears to be associated with phosphorylation of two novel proteins and/or PKC down-regulation.  相似文献   

12.
13.
Rho GTPases participate in various important signaling pathways and have been implicated in myogenic differentiation. Here the first evidence is provided that in C2C12 myoblasts sphingosine 1-phosphate (SPP) rapidly and transiently induced membrane association of Rho A in a pertussis toxin-insensitive manner. The bioactive lipid preferentially relocalized the GTPase to Golgi-enriched membrane. Translocation of Rho A was abolished by inhibition or down-regulation of protein kinase C (PKC). Notably, treatment with G?6976, an inhibitor of conventional PKCs, which selectively blocked PKC alpha in these cells, prevented SPP-induced Rho A translocation. Conversely rottlerin, a selective inhibitor of PKC delta, was without effect, demonstrating that SPP signaling to Rho A involves PKC alpha but not PKC delta activation. This novel functional relationship between the two proteins may have a role in SPP-mediated regulation of downstream effectors.  相似文献   

14.
15.
It has been suggested that some polysaccharides play important roles in immune responses. Therefore, we used various types of polysaccharides for analysis of macrophage-mediated tumor cell killing. We report here that fucoidan blocked macrophage activation occurs in an inductive phase but enhanced macrophage activation appears in an effector phase.  相似文献   

16.
Upon hepatocyte growth factor stimulation, its receptor c-Met is rapidly internalized via clathrin-coated vesicles and traffics through an early endosomal compartment. We show here that c-Met accumulates progressively in perinuclear compartments, which in part include the Golgi. The c-Met content in the Golgi is principally the newly synthesized precursor form and, to a lesser extent, the internalized, recycling c-Met. By following the trafficking of c-Met inside the cell using a semi-automatic procedure and using inhibition or activation of protein kinase C (PKC) and microtubule depolymerizing agents, we show that PKC positively controls the trans-cytosolic movement of c-Met along microtubules. In parallel to its traffic, internalized c-Met is progressively degraded by a proteasome-sensitive mechanism; the lysosomal pathway does not play a substantial role. Inhibition or promotion of c-Met traffic to the perinuclear compartment does not alter the kinetics of proteasome-dependent c-Met degradation. Thus susceptibility to proteasomal degradation is not a consequence of post-endocytic traffic. The data define a PKC-controlled traffic pathway for c-Met that operates independently of its degradative pathway.  相似文献   

17.
Insulin treatment of fibroblasts overexpressing the insulin receptor causes a rapid accumulation of the GTP-bound form of p21ras. We have studied the involvement of protein kinase C (PKC) in, and the effect of phenylarsine oxide (PAO), a putative inhibitor of tyrosine phosphatase activity on, this process. Activation of p21ras was not observed when the cells were stimulated with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and pretreatment with TPA for 16 h, sufficient to down-regulate PKC activity, did not abolish p21ras activation by insulin. These results show that PKC is not involved in the insulin-induced activation of p21ras. Pretreatment of the cells with PAO for 5 min completely blocked insulin-induced p21ras activation. Addition of 2,3-dimercaptopropanol prevented this inhibition by PAO. Also, addition of PAO after insulin stimulation could reverse the activation of p21ras. Since PAO did not affect overall phosphorylation of the insulin receptor beta-chain, we conclude that a PAO-sensitive protein is involved in the induction of p21ras activation by insulin.  相似文献   

18.
The stress-activated protein kinase/c-Jun N-terminal protein kinase (JNK) is induced in response to ionizing radiation and other DNA-damaging agents. Recent studies indicate that activation of JNK is necessary for induction of apoptosis in response to diverse agents. Here we demonstrate that methylmethane sulfonate (MMS)-induced activation of JNK is inhibited by overexpression of the anti-apoptotic protein Bcl-xL, but not by caspase inhibitors CrmA and p35. By contrast, UV-induced JNK activity is insensitive to Bcl-xL. The results demonstrate that treatment with MMS is associated with an increase in tyrosine phosphorylation of related adhesion focal tyrosine kinase (RAFTK)/proline-rich tyrosine kinase 2 (PYK2), an upstream effector of JNK and that this phosphorylation is inhibited by overexpression of Bcl-xL. Furthermore, overexpression of a dominant-negative mutant of RAFTK (RAFTK K-M) inhibits MMS-induced JNK activation. The results indicate that inhibition of RAFTK phosphorylation by MMS in Bcl-xL cells is attributed to an increase in tyrosine phosphatase activity in these cells. Hence, treatment of Bcl-xL cells with sodium vanadate, a tyrosine phosphatase inhibitor, restores MMS-induced activation of RAFTK and JNK. These findings indicate that RAFTK-dependent induction of JNK in response to MMS is sensitive to Bcl-xL, but not to CrmA and p35, by a mechanism that inhibits tyrosine phosphorylation and thereby activation of RAFTK. Taken together, these findings support a novel role for Bcl-xL that is independent of the caspase cascade.  相似文献   

19.
Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a number of genes. NF-kappa B is a heterodimer of 50- and 65-kDa subunits sequestered in the cytoplasm complexed to inhibitory protein I kappa B. Following stimulation of cells, I kappa B dissociates from NF-kappa B, allowing its translocation to the nucleus, where it carries out the transactivation function. The precise mechanism controlling NF-kappa B activation and the involvement of members of the protein kinase C (PKC) family of isotypes have previously been investigated. It was found that phorbol myristate acetate, (PMA) which is a potent stimulant of phorbol ester-sensitive PKC isotypes, activates NF-kappa B. However, the role of PMA-sensitive PKCs in vivo is not as apparent. It has recently been demonstrated in the model system of Xenopus laevis oocytes that the PMA-insensitive PKC isotype, zeta PKC, is a required step in the activation of NF-kappa B in response to ras p21. We demonstrate here that overexpression of zeta PKC is by itself sufficient to stimulate a permanent translocation of functionally active NF-kappa B into the nucleus of NIH 3T3 fibroblasts and that transfection of a kinase-defective dominant negative mutant of zeta PKC dramatically inhibits the kappa B-dependent transactivation of a chloramphenicol acetyltransferase reporter plasmid in NIH 3T3 fibroblasts. All these results support the notion that zeta PKC plays a decisive role in NF-kappa B regulation in mammalian cells.  相似文献   

20.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号