首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary An organ culture system is described for adult human articular cartilage obtained from joints afterfemoral head replacement operations. Cartilage slices maintain maximal viability for 2 days in culture as assessed by uptake of [3H]uridine and [3H]leucine into whole tissue, and35SO4 into sulphated glycosaminoglycans (GAGs). Since GAGs are the components of cartilage matrix, the depletion of which is associated with osteoarthrosis, a method for measuring sulphated GAG synthesis in culture has been investigated.  相似文献   

2.
The effects of the sulfate- and FCS concentration on the rate of synthesis and the biochemical properties of glycosaminoglycans, synthesized in bovine articular cartilage in vitro, were studied. 20% FCS in the culture medium stimulated the rate of synthesis. In media without FCS, the rate of synthesis decends from day 0 on. The differences in incorporation rates of [35S]-sodium sulfate and 1,6-[3H]-glucosamine-HCl into glycosaminoglycans in serum free media containing 9 microM and 900 microM sulfate were used to discuss the inorganic sulfate concentration in cartilage. In 9 microM sulfate medium, the newly synthesized glycosaminoglycans contain higher levels of unsulfated disaccharides than the endogenous glycosaminoglycans. In each culture medium, the ratio 6-sulfated disaccharides to 4-sulfated disaccharides of the newly synthesized glycosaminoglycans becomes higher after 3 days in culture. The glycosaminoglycan synthesis is underestimated, when chondrocytes are cultured in media containing less than 200 microM sulfate.  相似文献   

3.
An adequate intake of magnesium (Mg) is important for bone cell activity and contributes to the prevention of osteoporosis. Because (a) Mg is mitogenic for osteoblasts and (b) reduction of osteoblast proliferation is detected in osteoporosis, we investigated the influence of different concentrations of extracellular Mg on osteoblast-like SaOS-2 cell behavior. We found that low Mg inhibited SaOS-2 cell proliferation by increasing the release of nitric oxide through the up-regulation of inducible nitric oxide synthase (iNOS). Indeed, both pharmacological inhibition with the iNOS inhibitor l-N(6)-(iminoethyl)-lysine-HCl and genetic silencing of iNOS by small interfering RNA restored the normal proliferation rate of the cells. Because a moderate induction of nitric oxide is sufficient to potentiate bone resorption and a relative deficiency in osteoblast proliferation can result in their inadequate activity, we conclude that maintaining Mg homeostasis is relevant to ensure osteoblast function and, therefore, to prevent osteoporosis.  相似文献   

4.
Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats   总被引:6,自引:0,他引:6  
Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R.  相似文献   

5.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

6.
The distribution of water and glycosaminoglucan in different functional regions of bovine immature articular cartilage were studied. There was always more water in each articulating than in the corresponding growin zone, but there was less water in both zones in the areas of maximum contact. There was more hyaluronate and much more keratan sulphate in the articulating areas of maximum contact than in the minimum contact areas. In the growing zone the distribution of these two glycosaminoglycans did not vary as significantly but there was slightly more keratan sulphate in the area of maximum contact. Regional variations in chondroitin sulphate were also present although not as striking as those of keratan sulphate. The results suggest that some keratan sulphate may be synthesized as reaction to load.  相似文献   

7.
The synthesis of hyaluronic acid by bovine articular cartilage in culture was inhibited after treatment with xanthine oxidase and hypoxanthine. Through the use of catalase, superoxide dismutase and the specific iron chelator diethylenetriaminepentaacetic acid, the active species responsible for inhibition was shown to be hydrogen peroxide. Hydrogen peroxide generated by glucose oxidase was also inhibitory. Some recovery of hyaluronic synthesis was evident after a further period of culturing. Proteoglycan synthesis was inhibited in parallel with hyaluronic acid synthesis.  相似文献   

8.
We have studied the effect of nitric oxide (NO) on the production of arachidonic acid ([14C]-AA) metabolites in the rat oviduct. The basal synthesis of eicosanoids was measured by the conversion of ([14C]-AA) to the different radiolabeled products of cyclooxygenase (COX). The oviducts incubated for 1 h with the labeled substrate of COX were able to convert 3.3 +/- 0.3% of ([14C]-AA) to 6-ceto-PGF1alpha, 10.7 +/- 1.0% to PGF2alpha, 13.5 +/- 1.2% to PGE2 and 6.3 +/- 0.5% to TXB2. The tissues were incubated with different doses of two NO donors: SIN-1 and Spermine NONOate. The results indicated that SIN-1 produces a significant decrease (50%; P < 0.05) in all prostanoids evaluated in a dose-response fashion. The inhibitory effect was completely reversed by addition of 20 microg/ml of hemoglobin (Hb), a NO scavenger. The addition of Spermine NONOate to the incubation medium diminished significantly (65%) the synthesis of COX metabolites suggesting that NO acts by inhibiting COX activity in the rat oviduct. However, NOS inhibitors, N(G)-L-arginine-methyl-ester (L-NAME) nd N(G)-L-monomethyl-arginine (L-NMMA) had no effect on basal production of the prostanoids. These results indicate that in the rat oviduct the synthesis of COX metabolites is negatively regulated by nitric oxide.  相似文献   

9.
The subject of this study was the participation of nitric oxide (NO) in plant responses to wounding, promoted by nicking of pelargonium ( Pelargonium peltatum L.) leaves. Bio-imaging with the fluorochrome 4,5-diaminofluorescein diacetate (DAF-2DA) and electrochemical in situ measurement of NO showed early (within minutes) and transient (2 h) NO generation after wounding restricted to the site of injury. In order to clarify the functional role of NO in relation to modulation of the redox balance during wounding, a pharmacological approach was used. A positive correlation was found between NO generation and regulation of the redox state. NO caused a slight restriction of post-wounded O2 production, in contrast to the periodic and marked increase in H2O2 level. The observed changes were accompanied by time-dependent inhibition of catalase (CAT) and ascorbate peroxidase (APX) activity. The effect was specific to NO, since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) reversed the inhibition of CAT and APX, as well as temporarily enhancing H2O2 synthesis. Finally, cooperation of NO/H2O2 restricted the depletion of the low-molecular weight antioxidant pool ( i.e . ascorbic acid and thiols) was positively correlated with sealing and reconstruction changes in injured pelargonium leaves ( i.e . lignin formation and callose deposition). The above results clearly suggest that NO may promote restoration of wounded tissue through stabilisation of the cell redox state and stimulation of the wound scarring processes.  相似文献   

10.
11.
12.
13.
Addition of human, recombinant interleukin-1β (hrIL-1β) to cultures of lapine articular chondrocytes provoked a delayed increase in the production of both nitric oxide (NO) and lactate. These two phenomena followed a similar time course and shared a parallel dose-response sensitivity to hrIL-1β. A causal relationship is suggested by the ability of N-monomethyl-L-arginine (NMA), an inhibitor of NO synthase, to blunt the glycolytic response to hrIL-1β. Furthermore, addition of S-nitroso-N-acetylpenicillamine (SNAP), which spontaneously generates NO in culture, increased lactate production to the same degree as IL-1. However, 8-Br-cGMP and isobutylmethylxanthine (IBMX) had no effect either in the presence or absence of IL-1. Even under standard, aerobic, cell culture conditions, chondrocytes consumed little oxygen, either in the presence or absence of IL-1 or NMA. Furthermore, cyanide at concentrations up to 100 μM had no effect upon NO synthesis or lactate production. Thus, the increases in glycolysis under study were not secondary to reduced mitochondrial activity. Although cells treated with IL-1 had increased rates of glycolysis, their concentrations of ATP fell below those of untreated chondrocytes in a time-dependent, but NMA-independent, manner. Transforming growth factor-β (TGF-β) and synovial cytokines (CAF) also increased lactate production. However, TGF-β failed to induce NO, and its effect on glycolysis was independent of NMA. Furthermore, cells treated with TGF-β were not depleted in ATP. These data are consistent with hypotheses that rates of proteoglycan synthesis are, in part, regulated by the intracellular concentration of ATP or by changes in pericellular pH. These two possibilities are not mutually exclusive. © 1994 wiley-Liss, Inc.  相似文献   

14.
The effect of lesions induced by bilateral intracerebroventricular (i.c.v.) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31%) as well as in mGluR (by 22%) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by N(G)-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-(3)H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding. Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded.  相似文献   

15.
Chondrocytes in situ experience fluctuations in extracellular osmolarity resulting from mechanical loading. The objective of this study was to determine whether hyperosmotic stress causes or exacerbates interleukin-1 (IL-1)-mediated effects in bovine articular cartilage. Disks of cartilage cut from the articular surface of calf radiocarpal joints were incubated for 24h in the presence or absence of IL-1 in Dulbecco's modified Eagle's medium adjusted to various osmolalities with sucrose or NaCl. Cyclooxygenase (COX)-2 levels in the cartilage were examined by Western blot. Culture media were assayed for prostaglandin E(2) (PGE(2)), nitrite as an indicator of nitric oxide (NO) production, and sulfated glycosaminoglycan as an indicator of proteoglycan degradation. We report the osmolality-dependent potentiation of COX-2 and PGE(2) production, and the osmolality-dependent inhibition of NO production and proteoglycan degradation in IL-1-activated cartilage. The data demonstrate that osmotic and cytokine signaling interact to differentially modulate IL-1-stimulated effects in calf articular cartilage.  相似文献   

16.
Nitric oxide mediates gravitropic bending in soybean roots   总被引:18,自引:0,他引:18       下载免费PDF全文
Hu X  Neill SJ  Tang Z  Cai W 《Plant physiology》2005,137(2):663-670
Plant roots are gravitropic, detecting and responding to changes in orientation via differential growth that results in bending and reestablishment of downward growth. Recent data support the basics of the Cholodny-Went hypothesis, indicating that differential growth is due to redistribution of auxin to the lower sides of gravistimulated roots, but little is known regarding the molecular details of such effects. Here, we investigate auxin and gravity signal transduction by demonstrating that the endogenous signaling molecules nitric oxide (NO) and cGMP mediate responses to gravistimulation in primary roots of soybean (Glycine max). Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip. Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric, with NO concentrating in the lower side of the root. Removal of NO with an NO scavenger or inhibition of NO synthesis via NO synthase inhibitors or an inhibitor of nitrate reductase reduced both NO accumulation and gravitropic bending, indicating that NO synthesis was required for the gravitropic responses and that both NO synthase and nitrate reductase may contribute to the synthesis of the NO required. Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips. Gravistimulation, NO, and auxin also induced the accumulation of cGMP, a response inhibited by removal of NO or by inhibitors of guanylyl cyclase, compounds that also reduced gravitropic bending. Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor, and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP, a cell-permeable analog of cGMP. These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots.  相似文献   

17.
18.
Investigations were performed on the effect of prednisolone (0.5 mg/kg) on the regenerating femoral articular cartilage of the knee joint in dogs that had been subjected to semiarthroplasty. After 70 days of prednisolone treatment the dogs were killed and the regenerating articular cartilage was removed, minced, and dried with acetone. The acetone-dried material was used for the determination of galactosamine, glucosamine, uronic acid, sulphate, sialic acid and hydroxyproline. Prednisolone treatment elicited a quantitative increase in galactosamine (30.2%), uronic acid (76.2%), and sulphate (9.1%), while no difference was observed in sialic acid content between the treated and untreated groups. From the molar ratio of the measured components it appears that prednisolone produced an increase in chondroitin sulphate and hyaluronic acid, and a decrease in the keratosulphate content of cartilage. By comparing the values measured in the regenerating articular cartilage of control and prednisolone-treated dogs with the values obtained in the mature articular cartilage, we may conclude that prednisolone--at least as regards the glycosaminoglycans of the ground substance--exerts an accelerating effect on cartilage regeneration.  相似文献   

19.
While there is increasing evidence that chondrocytes are affected by mechanically induced stimuli, endogenous force-related electrical potentials within articular cartilage have been so far observed only in-vitro. Using a porcine ex-vivo model (German Land Race), 8 knee joints were explanted and exposed to mechanical force (up to 800 N) using a special device. Electrodes were inserted into the cartilage matrix. With an amplifier and an A/D transducer the changes of electrical voltage between the electrodes as well as those of the force were recorded online and simultaneously on a computer. Additionally, we located one pair of electrodes on the surface of the cartilage tissue to detect electrical fields outside the cartilage tissue. In relation to the applied force we observed that electrical potentials derived from inside and outside the articular cartilage showed a correspondence. When an alternating force with an amplitude of 360 N and a frequency of about 0.2 Hz was periodically applied, we measured peak amplitudes ranging from 2.1 to 5.5 mV within the cartilage tissue with electrical negativity within the weight bearing area of the cartilage tissue. The measured voltages depended on the applied force, the location of the electrodes, and on anatomical variations. We found an almost linear relation between the magnitude of the applied force and the recorded voltage. With the help of the electrodes located outside and within the cartilage tissue, we were able to show that force dependent fields are generated inside the cartilage. There are several theories explaining the origin of these electrical phenomena, many of them focusing on the negative charges of the proteoglycans in relation to the flow of interstitial fluid and ions under compression. However, the consequences of these phenomena are yet not clear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号