首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Computer simulations of airflow patterns within the human upper respiratory tract (URT) are presented. The URT model includes airways of the head (nasal and oral), throat (pharyngeal and laryngeal), and lungs (trachea and main bronchi). The head and throat morphology was based on a cast of a medical school teaching model; tracheobronchial airways were defined mathematically. A body-fitted three-dimensional curvilinear grid system and a multiblock method were employed to graphically represent the surface geometries of the respective airways and to generate the corresponding mesh for computational fluid dynamics simulations. Our results suggest that for a prescribed phase of breath (i.e., inspiration or expiration), convective respiratory airflow patterns are highly dependent on flow rate values. Moreover, velocity profiles were quite different during inhalation and exhalation, both in terms of the sizes, strengths, and locations of localized features such as recirculation zones and air jets. Pressure losses during inhalation were 30-35% higher than for exhalation and were proportional to the square of the flow rate. Because particles are entrained and transported within airstreams, these results may have important applications to the targeted delivery of inhaled drugs.  相似文献   

2.
Aerosol delivery is noninvasive and is effective in much lower doses than required for oral administration. Currently, there are several types of therapeutic aerosol delivery systems, including the pressurized metered-dose inhaler, the dry powder inhaler, the medical nebulizer, the solution mist inhaler, and the nasal sprays. Both oral and nasal inhalation routes are used for the delivery of therapeutic aerosols. Following inhalation therapy, only a fraction of the dose reaches the expected target area. Knowledge of the amount of drug actually deposited is essential in designing the delivery system or devices to optimize the delivery efficiency to the targeted region of the respiratory tract. Aerosol deposition mechanisms in the human respiratory tract have been well studied. Prediction of pharmaceutical aerosol deposition using established lung deposition models has limited success primarily because they underestimated oropharyngeal deposition. Recent studies of oropharyngeal deposition of several drug delivery systems identify other factors associated with the delivery system that dominates the transport and deposition of the oropharyngeal region. Computational fluid dynamic simulation of the aerosol transport and deposition in the respiratory tract has provided important insight into these processes. Investigation of nasal spray deposition mechanisms is also discussed.  相似文献   

3.
Aerosol delivery to the airways of the human respiratory tract, followed by absorption, constitutes an alternative route of administration for compounds unsuitable for delivery by conventional oral and parenteral routes. The target for aerosol drug delivery is the airways epithelium, i.e. tracheal, bronchial, bronchiolar and alveolar cells, which become the site of drug deposition. These epithelial layers also serve as a barrier to the penetration of inhaled material. An in vitro model for aerosol deposition and transport across epithelia in the human airways may be a good predictor of in vivo disposition. The present preliminary studies begin an investigation that blends the dynamics of aerosol delivery and the basis of an in vitro simulated lung model to evaluate the transport properties of a series of molecular weight marker compounds across human-derived bronchiolar epithelial cell monolayers. An Andersen viable cascade impactor was used as a delivery apparatus for the deposition of size-segregated particles onto monolayers of small airway epithelial cells and Calu-3 cells. It was shown that these cell layers can withstand placement in the impactor, and that permeability can be tested subsequent to removal from the impactor.  相似文献   

4.
Colon cancer is the fourth most common cancer globally with 639,000 deaths reported annually. Typical chemotherapy is provided by injection route to reduce tumor growth and metastasis. Recent research investigates the oral delivery profiles of chemotherapeutic agents. In comparison to injection, oral administration of drugs in the form of a colon-specific delivery system is expected to increase drug bioavailability at target site, reduce drug dose and systemic adverse effects. Pectin is suitable for use as colon-specific drug delivery vehicle as it is selectively digested by colonic microflora to release drug with minimal degradation in upper gastrointestinal tract. The present review examines the physicochemical attributes of formulation needed to retard drug release of pectin matrix prior to its arrival at colon, and evaluate the therapeutic value of pectin matrix in association with colon cancer. The review suggests that multi-particulate calcium pectinate matrix is an ideal carrier to orally deliver drugs for site-specific treatment of colon cancer as (1) crosslinking of pectin by calcium ions in a matrix negates drug release in upper gastrointestinal tract, (2) multi-particulate carrier has a slower transit and a higher contact time for drug action in colon than single-unit dosage form, and (3) both pectin and calcium have an indication to reduce the severity of colon cancer from the implication of diet and molecular biology studies. Pectin matrix demonstrates dual advantages as drug carrier and therapeutic for use in treatment of colon cancer.  相似文献   

5.
The bolus inhalation method was used to measure the fraction of inhaled chlorine (Cl(2)) and ozone (O(3)) absorbed during a single breath as a function of longitudinal position in the respiratory system of 10 healthy nonsmokers during oral and nasal breathing at respired flows of 150, 250, and 1,000 ml/s. At all experimental conditions, <5% of inspired Cl(2) penetrated beyond the upper airways and none reached the respiratory air spaces. On the other hand, larger penetrations of O(3) beyond the upper airways occurred as flow increased and during nasal than during oral breathing. In the extreme case of oral breathing at 1,000 ml/s, 35% of inhaled O(3) penetrated beyond the upper airways and approximately 10% reached the respiratory air spaces. Mass transfer theory indicated that the diffusion resistance of the tissue phase was negligible for Cl(2) but important for O(3). The gas phase resistances were the same for Cl(2) and O(3) and were directly correlated with the volume of the nose and mouth during nasal and oral breathing, respectively.  相似文献   

6.
Airway irritation effects after single and repeated inhalation exposures to aerosols of beta-glucan (grifolan) were investigated in mice. In addition, the effects on serum total immunoglobulin E (IgE) production and histopathological inflammation in the respiratory tract were studied. The beta-glucan aerosols provoked slight sensory irritation in the airways, but the response was not concentration dependent at the levels studied. Slight pulmonary irritation was observed after repeated exposures. No effect was found on the serum total IgE levels, and no signs of inflammation were seen in the airways 6 h after the final exposure. The results suggest that, irrespective of previous fungal sensitization of the animals, inhaled beta-glucan may cause symptoms of respiratory tract irritation but without apparent inflammation. Respiratory tract irritation reported after inhalation of fungi may not be entirely attributed to beta-glucan.  相似文献   

7.
8.
The intranasal route of administration provides an effective and convenient means of delivering a number of compounds to the systemic circulation when the more usual oral or parenteral routes are inappropriate. The preservation of multi-dose nasal drops and sprays is essential. However, preservatives should not impair any of the normal functions of the nasal cavity, such as mucociliary clearance, since patients with compromised clearance can suffer extensively from respiratory tract infections. This paper reviews the results of a number of investigations into the effects of a range of commonly used preservatives on the mucociliary clearance apparatus.  相似文献   

9.
The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.  相似文献   

10.
Lcocabastine is an extremely potent and highly selective H(1)-receptor antagonist which has been specifically developed as eye drops and nasal spray for the treatment of allergic rhinoconjunctivitis. Clinical experience to date suggests that this topical antihistamine is at least as effective as other current first-line therapeutic approaches for the treatment of this condition, including oral H(1)-receptor antagonists and sodium cromoglycate. Onset of action is rapid, with clinical effects apparent within minutes of instillation. Moreover, duration of action is sufficiently long to permit a convenient twice-daily dosing regimen. Topical levocabastine is well tolerated with an adverse-effect profile comparable with that of placebo and sodium cromoglycate. As might be expected from the route of drug administration, application site reactions are the most frequent adverse effect associated with levocabastine eye drops and nasal spray with an incidence comparable with that seen in placebotreated controls. The availability of effective and well-tolerated topical antihistamines, such as levocabastine, is an important advance which broadens the range of therapeutic approaches available for the clinical management of allergic rhinoconjunctivitis. Levocabastine appears to be an attractive alternative to oral antihistamines as a first-line therapeutic option for the treatment of this atopic condition.  相似文献   

11.
The International Olympic Committee and World AntiDoping Agency restricts the use of beta2-agonists and only the inhaled administration of terbutaline, salbutamol, formoterol and salmeterol is permitted for therapeutic reasons. The aim of this study was to develop a test for the quantitation of terbutaline in urine and evaluate different parameters to distinguish between oral and inhaled administration of the drug. Urine samples were collected from asthmatic and non-asthmatic recreational swimmers who had received repeated doses of oral (3x2.5 mg plus 1x5 mg during 24 h) and inhaled (12x0.5 mg in 24 h with half of it being in the last 4 h) racemic terbutaline, and single oral (5 mg) or single inhaled doses (1 mg). Total terbutaline concentrations (free+conjugated) were determined by enzyme-linked immunosorbent assay. Results showed that after oral administrations urinary terbutaline concentrations were higher than those detected after inhalation. For confirmation purposes, a chiral capillary electrophoretic procedure was established and validated. A solid-phase extraction with Bond-Elut Certify cartridges was undertaken, separation performed using a 50 mM phosphate buffer (pH 2.5) containing 10 mM of (2-hydroxypropyl)-beta-cyclodextrin as running buffer and diode-array UV detection set at 204 nm. The proposed procedure is rapid, selective and sensitive allowing quantitation of free terbutaline enantiomers in urine. No statistical differences were found between total free terbutaline concentrations [S-(+)+R-(-)] in urine collected after oral and inhaled administrations of the drug. After oral doses enantiomeric [S-(+)]/[R-(-)] ratios lower than those obtained after inhalation were observed probably due to an enantioselective metabolism that take place in the intestine, but differences between both routes of administration were not statistically significant. Although different trends were observed after oral and inhaled doses in total terbutaline, total free terbutaline concentrations and in ratios between its enantiomers, differences observed were not sufficiently significant to establish cut-off values to clearly distinguish between both routes of administration.  相似文献   

12.
Peptide therapeutics (PTs) is generally regarded as highly effective macromolecule therapeutics at very low concentrations. The main issues surrounding the administration of PTs is guaranteeing that they are bioavailable, reach the desired therapeutic index and distribute throughout the body effectively. The oral administration, a non-invasive route, of PTs is considered a major complication due to inadequate oral absorption through biological membranes such as the small intestine epithelium due to presystemic proteolytic enzymatic activity. PTs bioavailability is further diminished in the systemic circulation due to low stability in the plasma and rapid excretion from the body. Many alternative routes can be considered non-invasive such as transdermal and nasal routes, but this review focuses on the oral route, specifically the small intestine region of the gastrointestinal tract. Although this region has the highest density of proteolytic enzymes, it contains tight junctions which have the lowest trans-epithelial electrical resistance throughout the body; thus paracellular transport of these large PTs can be achieved more readily. The use of a natural polysaccharide polymer, such as trimethyl chitosan (TMC), which enhances the bioavailability of these PTs through the small intestine, will also be discussed in great detail. TMC has been considered because it could potentially solve many of the mechanistic and chemical problems associated with oral therapeutic peptide administration. The safety of orally administered PTs through the small intestinal epithelium employing a polymer such as TMC is also discussed as this is a significant issue for regulatory bodies.  相似文献   

13.
The site of action of inhaled hypertonic saline was determined in 8- to 10-wk-old puppies by combining measurements of respiratory mechanics, made during mechanical ventilation and after midexpiratory flow interruptions, with direct measurements of alveolar pressure. Under both control conditions and after inhalation of 10% saline, we were able to partition lung mechanics into components representing the airways and tissue viscoelastic properties. Hypertonic saline challenge altered lung mechanics by increasing airway resistance and did not have any effect on elastic or viscoelastic properties of the lung.  相似文献   

14.
Drug delivery.   总被引:1,自引:0,他引:1  
Methods for the delivery of the products of biotechnology, namely peptides and proteins, are reviewed. More efficient methods of parenteral administration include the incorporation of drugs in liposomes, whereas the system favoured for respiratory delivery is the nasal route. The improved oral delivery of polypeptides remains an elusive goal.  相似文献   

15.
Inflammation is now marked as a central feature of asthma pathophysiology and aims of current asthma management are not only to treat acute symptoms of wheezing, breathlessness, chest tightness, cough but also to suppress the underlying inflammatory component. Despite the availability of a number of drugs, corticosteroids remain the mainstay in the management of all types of asthma as these are the most potent and effective antiinflammatory agents available so far. Corticosteroids suppress virtually every step in inflammation. However therapeutic doses of oral glucocorticoids are associated with a range of adverse reactions. To overcome these side effects, inhalations have been developed to deliver glucocorticoids directly to the lungs and in the process a number of aerosol preparations have become available, which have advantage of significantly lower toxicity due to low systemic absorption from the respiratory tract and rapid inactivation. Despite considerable efforts by pharmaceutical industry, it has been difficult to develop novel therapeutic agents for asthma management, which could surpass inhaled corticosteroids. Currently the data favours using inhaled corticosteroids as monotherapy in the majority of patients in all kinds of asthma. If combination therapy is recommended to achieve additional control in severe asthma cases, other drugs such as beta-agonists, antileukotrienes, theophylline, etc. are considered as adjunct therapies to corticosteroids. This review discusses the importance of corticosteroids as first line therapy for asthma treatment with the availability of inhaled corticosteroids for chronic treatment and oral formulations for treating acute exacerbations of moderate to severe asthma.  相似文献   

16.
Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced.  相似文献   

17.
Microorganisms gain access to the airways and respiratory epithelial surface during normal breathing. Most inhaled microbes are trapped on the mucous layer coating the nasal epithelium and upper respiratory tract, and are cleared by ciliary motion. Microorganisms reaching the alveolar spaces are deposited on the pulmonary epithelium. This contact initiates complex offensive and defensive strategies by both parties. Here, we briefly outline how the pulmonary pathogen Pseudomonas aeruginosa uses multi-pronged strategies that include cell surface appendages, and secreted and injected virulence determinants to switch from an unobtrusive soil bacterium to a pathogen for lung epithelium colonization. Understanding the complex interactions between the lung epithelium and P. aeruginosa might enable more effective therapeutic strategies against infection in cystic fibrosis and immuno-compromised individuals.  相似文献   

18.
The oral route remains the preferred route of administration to ensure patient satisfaction and compliance. However, new chemical entities may exhibit low bioavailability after oral administration because of poor stability within the gastrointestinal tract, poor solubility in gastrointestinal fluids, low mucosal permeability, and/or extensive first-pass metabolism. Consequently, these new drug substances cannot be further developed using conventional oral formulations. This issue is addressed by an innovative approach based on the entrapment of drug molecules in drug/carrier assembling systems. The carrier materials are lipids, naturally occurring polymers or synthetic polymers, which are considered as nontoxic and biocompatible materials. Drug entrapment is intended to protect drug substances against degradation by gastrointestinal fluids. Fine drug/carrier particle size ensures increased drug dissolution rates. Carriers and particle supramolecular organization can be designed to enhance drug absorption through the intestinal epithelium and lymphatic transport. Promising preclinical results have been obtained with model drugs like paclitaxel, insulin, calcitonin, or cyclosporin. Attention has focused on mucoadhesive carriers like chitosan that favor an intimate and extended contact between drugs and intestinal cells, thus enhancing absorption. Addition of ligands such as lectins improves intestinal drug absorption through specific binding of the carrier to intestinal cell carbohydrates. In conclusion, drug/carrier particulate systems are an attractive and exciting drug delivery strategy for highly potent drug substances unsuitable for oral use. Further evidence will determine whether this approach has marked therapeutic benefits over conventional drug formulations and is compatible with large-scale industrial production and stringent registration requirements. Producing highly effective particulate systems requiring low-complexity manufacturing processes is therefore an ongoing challenge.  相似文献   

19.
相对于其他的给药途径,蛋白质多肽类药物的口服、经鼻、肺部给药途径更具可行性和商业价值。利用制剂学方法可提高蛋白质多肽类药物生物利用度。通过蛋白多肽类给药系统的评价,对近年来国内外此类药物在剂型、体内外稳定性及生物利用度等方面的研究进展予以综述。  相似文献   

20.
TArPP (Tyr-D-Arg-Phe-Phe-NH(2)), 1-10 micromol/kg, was administered to anesthetized rats by nasal microinfusion, intratracheal microinfusion, intratracheal nebulization, aerosol inhalation, and i.v. bolus and infusion. Plasma concentrations of TArPP and its deamidated metabolite were determined by LC-MS-MS.Regional differences in bioavailability (F), first-pass metabolism, and absorption rate were found for TArPP after delivery to the respiratory tract. Absorption was rapid after both pulmonary and nasal administration (t(max) approximately 10-20 min). After nasal microinfusion, F was 52 +/- 9%. For all the pulmonary groups, F was higher (72-114%). First-pass metabolism of TArPP was lower in the lung than in the nasal cavity. It is evident that the pulmonary route is attractive for successful systemic delivery of small, hydrophilic and enzymatic susceptible peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号